Pg 376-377 #1-17 (skip #15)

- 1. They must be ordered pairs so there are equal amounts of *x* and *y*-values.
- **2.** It is a data point that is far removed from the other points in a data set.
- **3.** no relationship; A student's shoe size is not related to his or her IQ.
- **4.** negative linear relationship; As time passes, the distance to the destination decreases.
- nonlinear relationship; On each successive bounce, the ball rebounds to a height less than its previous bounce.
- **6.** positive linear relationship; As the number of toppings increase, the price of the pizza will increase.
- **7. a.** (22, 152), (40, 94), (28, 134), (35, 110), (46, 81);

b. As the average price of jeans increases, the number of pairs of jeans sold decreases.

8. a. 2011

- b. about 875 SUVs
- c. negative linear relationship
- **9. a.** 3.5 h
 - **b.** \$85
 - **c.** There is a positive linear relationship between hours worked and earnings.
- **10.** negative linear relationship; outlier at (15, 10), gap between *x*-values of 15 to 25 and *y*-values of 23 to 33
- **11.** nonlinear relationship; no outliers, gaps, or clusters
- **12.** no relationship; no obvious outliers, gaps, or clusters
- **13.** positive linear relationship
- 14. a. positive linear relationship
 - **b.** The more time spent studying, the better the test score.

The data show a weak positive linear relationship.

- **b.** *Sample answer:* The point (32, 250) is an outlier because the store only offers one 32 GB 7-inch tablet and 32 GB is significantly greater than the other options. There are gaps between x = 4, x = 8, and x = 16 because these are the only available options for memory. There are clusters along x = 4, x = 8, and x = 16 because these are these are the only available options for memory.
- **17.** See Taking Math Deeper.

Pg 382 #1-11 (skip #7)

- **1.** You can estimate and predict values.
- 2. *Sample answer:* not a good representation; Too many points in the data set lie below the line.
- **3.** -0.98, because it is closer to -1 than 0.91 is to 1.

```
(|-0.98| > |0.91|)
```


- **c.** *Sample answer:* y = 0.75x
- d. Sample answer: 7.5 lb
- e. Sample answer: \$16.88

- **b.** Sample answer: y = -0.5x + 60
- c. Sample answer: The slope is -0.5 and the *y*-intercept is 60. So, you could predict that 60 hot chocolates are sold when the temperature is 0°F, and the sales decrease by about 1 hot chocolate for every 2°F increase in temperature.
- d. 50 hot chocolates

- **b.** Sample answer: y = 55x + 15
- **c.** 55 miles
- **d.** 15 miles
- e. Sample answer: 400 mi
- **8.** y = -9.6x + 883; $r \approx -0.96$; The relationship between *x* and *y* is a strong negative correlation and the equation closely models the data.
- **9.** y = 0.9x + 4; $r \approx 0.999$; The relationship between *x* and *y* is a strong positive correlation and the equation closely models the data; 4 in.
- 10. See Taking Math Deeper.
- **11. a.** y = 48x + 11; $r \approx 0.98$; The relationship between *x* and *y* is a strong positive correlation and the equation closely models the data.
 - **b.** 251 feet
 - **c.** The height of a hit baseball is not linear. The best fit line from part (a) only models a small part of the data.

Pg 390-391 #3-13

- **3.** total of females surveyed: 73; total of males surveyed: 59
- **4.** total of "no" participants: 52; total of "yes" participants: 80
- **5.** 51
- **6.** 30
- 7. 71 students are juniors;
 75 students are seniors;
 93 students are attending the school play; 53 students are not attending the school play.
- 78 people have limited cell phone texting plans;
 190 people have unlimited cell phone texting plans; 253 people have limited cell phone minutes; 15 people have unlimited cell phone minutes.
- **9. a.** 19; 42
 - b. number of students surveyed: 72 6th-graders, 74 7th-graders, 65 8th-graders; 112 students chose grades, 40 students chose popularity, 59 students chose sports.
 - **c.** about 8.5%

а.			Age			
		20–29	30–39	40–49	Total	
	Saved It Least \$1000	Yes	14	27	25	66
	Sav at Lo \$10	No	36	33	15	84
		Total	50	60	40	150

b.

10.

		Age			
		20–29 30–39 40–49			
ved east 000	Yes	28%	45%	62.5%	
Sav at Lu \$10	No	72%	55%	37.5%	

c. Yes, the table shows that as age increases, people are more likely to have at least \$1000 in savings.

11. a.			Eye Color			
			Green	Blue	Brown	Total
	ıder	Male	5	16	27	48
	Gender	Female	3	19	18	40
		Total	8	35	45	88

b. 48 males were surveyed.
40 females were surveyed.
8 students have green eyes.
35 students have blue eyes.
45 students have brown eyes.

c. [Eye Color			
			Green	Blue	Brown	
	der	Male	63%	46%	60%	
	Gen	Female	38%	54%	40%	

Sample answer: About 63% of the students with green eyes are male. 40% of the students with brown eyes are female.

12.

		Eye Color				
		Green	Blue	Brown		
Gender	Male	10.4%	33.3%	56.3%		
Gen	Female	7.5%	47.5%	45%		

Sample answers: About 10.4% of the males surveyed have green eyes. 7.5% of the females surveyed have green eyes.

13. See Taking Math Deeper.

Pg 397-399 #4-18

- 4. *Sample answer:* stem-and-leaf plot; shows how data is distributed
- **5.** *Sample answer:* line graph; shows changes over time
- 6. *Sample answer:* dot plot; shows the number of times each outcome occurs
- 7. *Sample answer:* line graph; shows changes over time
- **8. a.** yes; The pictograph shows the number of hours worked each month using pictures.
 - **b.** yes; The bar graph shows the number of hours worked each month.
- **9. a.** yes; The circle graph shows the data as parts of the whole.
 - **b.** no; The bar graph shows the number of students, not the portion of students.
- 10. when the data are in terms of intervals of one category, as opposed to multiple categories; *Sample answer:* You can use a histogram to display the frequencies of voters in the last election by age group.

- 11. The pictures of the bikes are the largest on Monday and the smallest on Wednesday, which makes it seem like the distance is the same each day.
- **12.** The break in the scale for the vertical axis makes it appear as though there is a greater difference in sales between months.
- **13.** The intervals are not the same size.
- **14.** The widths of the bars are different, so it looks like some months have more rainfall.
- **15.** *Sample answer:* bar graph; Each bar can represent a different vegetable.
- **16.** yes; The vertical axis has a scale that increases by powers of 10, which makes the data appear to have a linear relationship.
- 17. Sample answer: dot plot
- **18. a.** The percents do not sum to 100%.
 - **b.** *Sample answer:* bar graph; It would show the frequency of each sport.

Pg 401-403 #1-5, 7, 10, 11

- **1. a.** 2012
 - **b.** 225 geese
 - c. positive linear relationship
- **2.** negative linear relationship; outlier: (21, 40)
- **3.** no relationship; cluster around (12, 16)
- **4.** positive linear relationship; gap from x = 12 to x = 18

- **b.** Sample answer: y = 14x + 478
- **c.** *Sample answer:* The slope is 14 and the *y*-intercept is 478. So, the number of students in the year prior to the 10-year period was about 478 and the number of students is increasing by about 14 students per year.
- d. 632 students

7.			Food		
			Likes	Dislikes	Total
	up	Teenagers	96	4	100
	Group	Adults	21	79	100
	Age	Senior Citizens	18	82	100
		Total	135	165	300

- **10.** *Sample answer:* line graph; shows changes over time
- **11.** *Sample answer:* scatter plot; shows the relationship between two data sets