Essential Question When the dimensions of a solid increase by a factor of *k*, how does the surface area change? How does the volume change?

Work with a partner. Copy and complete the table. Describe the pattern. Are the dimensions proportional? Explain your reasoning.

Radius	1	1	1	1	1
Height	1	2	3	4	5
Surface Area					
Volume					

Radius	1	2	3	4	5
Height	1	2	3	4	5
Surface Area					
Volume					

Соммон

Geometry

In this lesson, you will

- identify similar solids.
- use properties of similar solids to find missing measures.
- understand the relationship between surface areas of similar solids.
- understand the relationship between volumes of similar solids.
- solve real-life problems.

Applying Standard 8.G.9 a.

b.

2 ACTIVITY: Comparing Surface Areas and Volumes

Work with a partner. Copy and complete the table. Describe the pattern. Are the dimensions proportional? Explain.

Base Side	6	12	18	24	30
Height	4	8	12	16	20
Slant Height	5	10	15	20	25
Surface Area					
Volume					

-What Is Your Answer?

- **3. IN YOUR OWN WORDS** When the dimensions of a solid increase by a factor of *k*, how does the surface area change?
- **4. IN YOUR OWN WORDS** When the dimensions of a solid increase by a factor of *k*, how does the volume change?
- **5. REPEATED REASONING** All the dimensions of a prism increase by a factor of 5.
 - **a.** How many times greater is the surface area? Explain.

Use what you learned about surface areas and volumes of similar solids to complete Exercise 3 on page 359.

8.4 Lesson

Cylinder A

6 m

Not proportional

4 m

Similar solids are solids that have the same shape and proportional corresponding dimensions.

EXAMPLE

5 m

3 m

1

Identifying Similar Solids

Check to see if corresponding dimensions are proportional.

Cylinder C

Cone X

13 vd

Cylinder A and Cylinder B

 $\frac{\text{Height of A}}{\text{Height of B}} = \frac{4}{3}$ $\frac{\text{Radius of A}}{\text{Radius of B}} = \frac{6}{5}$

Cylinder A and Cylinder C

 $\frac{\text{Height of A}}{\text{Height of C}} = \frac{4}{5}$ $\frac{\text{Radius of A}}{\text{Radius of C}} = \frac{6}{7.5} = \frac{4}{5}$ Proportional

So, Cylinder C is similar to Cylinder A.

Finding Missing Measures in Similar Solids EXAMPLE 2

The cones are similar. Find the missing slant height ℓ .

The slant height is 18.2 yards. 2.

On Your Own

- 1. Cylinder D has a radius of 7.5 meters and a height of 4.5 meters. Which cylinder in Example 1 is similar to Cylinder D?
- **2.** The prisms at the right are similar. Find the missing width and length.

low You're Ready

Exercises 4–9

Linear Measures

Solid A

Solid B

Surface Areas of Similar Solids

When two solids are similar, the ratio of their surface areas is equal to the square of the ratio of their corresponding linear measures.

3 Finding Surface Area

EXAMPLE

On Your Own

The solids are similar. Find the surface area of the red solid. Round your answer to the nearest tenth.

Volumes of Similar Solids

When two solids are similar, the ratio of their volumes is equal to the cube of the ratio of their corresponding linear measures.

4 in.

 $\frac{\text{Volume of A}}{\text{Volume of B}} = \left(\frac{a}{b}\right)^3$

E 4 Finding Volume

Volume = 2000 ft^3

Study Tip 📈
When the dimensions
of a solid are multiplied
by k, the surface area
is multiplied by k^2 and
the volume is multiplied
by k^3 .

The dimensions of the touch tank at an aquarium are doubled. What is the volume of the new touch tank?

A	150 ft ³	B	4000 ft^3
(C)	8000 ft ³	D	16,000 ft ³

The dimensions are doubled, so the ratio of the dimensions of the original tank to the dimensions of the new tank is 1:2.

$$\frac{\text{Original volume}}{\text{New volume}} = \left(\frac{\text{Original dimension}}{\text{New dimension}}\right)^3$$
$$\frac{2000}{V} = \left(\frac{1}{2}\right)^3 \qquad \text{Substitute.}$$
$$\frac{2000}{V} = \frac{1}{8} \qquad \text{Evaluate.}$$
$$16,000 = V \qquad \text{Cross Products Property}$$

The volume of the new tank is 16,000 cubic feet. So, the correct answer is **D**.

On Your Own

Now You're Ready Exercises 10–13 The solids are similar. Find the volume of the red solid. Round your answer to the nearest tenth.

Vocabulary and Concept Check

- 1. VOCABULARY What are similar solids?
- **2. OPEN-ENDED** Draw two similar solids and label their corresponding linear measures.

Practice and Problem Solving

- **3.** NUMBER SENSE All the dimensions of a cube increase by a factor of $\frac{3}{2}$.
 - a. How many times greater is the surface area? Explain.
 - b. How many times greater is the volume? Explain.

The solids are similar. Find the missing dimension(s).

The solids are similar. Find the surface area *S* or volume *V* of the red solid. Round your answer to the nearest tenth.

- **14. ERROR ANALYSIS** The ratio of the corresponding linear measures of two similar solids is 3:5. The volume of the smaller solid is 108 cubic inches. Describe and correct the error in finding the volume of the larger solid.
- **15. MIXED FRUIT** The ratio of the corresponding linear measures of two similar cans of fruit is 4 to 7. The smaller can has a surface area of 220 square centimeters. Find the surface area of the larger can.

The volume of the larger solid is 300 cubic inches.

16. ENGINE The volume of a car engine is 390 cubic inches. Which scale model of the car has the greater engine volume, a 1 : 18 scale model or a 1 : 24 scale model? How much greater is it?

- **17. MARBLE STATUE** You have a small marble statue of Wolfgang Mozart. It is 10 inches tall and weighs 16 pounds. The original statue is 7 feet tall.
 - **a.** Estimate the weight of the original statue. Explain your reasoning.
 - **b.** If the original statue were 20 feet tall, how much would it weigh?
- **18. REPEATED REASONING** The largest doll is 7 inches tall. Each of the other dolls is 1 inch shorter than the next

larger doll. Make a table that compares the surface areas and the volumes of the seven dolls.

Wolfgang Mozart

19. Precision: You and a friend make paper cones to collect beach glass. You cut out the largest possible three-fourths circle from each piece of paper.

- **a.** Are the cones similar? Explain your reasoning.
- b. Your friend says that because your sheet of paper is twice as large, your cone will hold exactly twice the volume of beach glass. Is this true? Explain your reasoning.

Fair Game Review What you learned in previous grades & lessons

Draw the figure and its reflection in the *x*-axis. Identify the coordinates of the image. (*Section 2.3*)

20. *A*(1, 1), *B*(3, 4), *C*(4, 2)

21. *J*(-3, 0), *K*(-4, 3), *L*(-1, 4)

22. MULTIPLE CHOICE Which system of linear equations has no solution? *(Section 5.4)*

(A) y = 4x + 1 y = -4x + 1(B) y = 2x - 7 y = 2x + 7(C) 3x + y = 1 6x + 2y = 2(D) 5x + y = 3x + 5y = 15