

Independent & Dependent Events

Learning Target:

- I can identify independent and dependent events.
- I can use formulas to find probabilities of independent
- and dependent events.

Key Vocabulary & Idea:

compound events may be *independent events* or *dependent events.*

Independent Events

when the	of one event
affect the	that the other event(s) will
occur.	

Probability of Independent Events

The probability of two or more independent events is the product of the probabilities of the events.

 $P(A \text{ and } B) = P(A) \bullet P(B)$

 $P(A \text{ and } B \text{ and } C) = P(A) \bullet P(B) \bullet P(C)$

Finding the Probability of Independent Events

You spin the spinner and flip the coin. What is the probability of spinning a prime number and flipping tails?

Does the outcome of spinning the spinner affect the outcome of flipping the coin? Therefore, the events are *independent*.

Practice

What is the probability of spinning a multiple of 2 and flipping heads?

Key Vocabulary & Idea:

compound events may be independent events or dependent events.

Dependent Events

when the of one event affect

the _____ that the other event(s) will occur.

Probability of Dependent Events

The probability of two or more dependent events A and B is the probability of A times the probability of B after A occurs.

$$P(A \text{ and } B) = P(A) \bullet P(B \text{ after } A)$$

Finding the Probability of Dependent Events:

You have a bag of marbles. What is the probability that you pick blue marble (and don't replace it) and then a red marble?

Does choosing a marble and not replacing it change the number of marbles left? Therefore, the events are dependent.

Practice

What is the probability that you choosing a green marble (without replacing it) and then choosing a yellow marble?

Finding the Probability of Dependent Events:

People are randomly chosen to be game show contestants from an audience of 100 people. You are with 5 of your relatives and 6 other friends. What is the probability that one of your relatives is chosen first, and then one of your friends is chosen second?

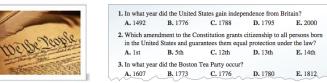
> Does choosing an audience member change the number of audience members left? Therefore, the events are dependent.

Practice

What is the probability that you, your relatives, and your friends are not chosen to be either of the first two contestants?

Finding the Probability of Dependent Events:

A student randomly guesses the answer for each of the multiple-choice questions. What is the probability of answering all three questions


correctly?

A. 1492	B. 1776	C. 1788	Dendence from B D. 1795	E. 2000
			citizenship to al al protection un	
A. 1st	B. 5th	C. 12th	D. 13th	E. 14th
3. In what yea	r did the Boston	Tea Party occur	?	
A. 1607	B. 1773	C. 1776	D . 1780	E. 1812

Does choosing the answer for one question affect the choice for the other questions?

Finding the Probability of Dependent Events:

Does choosing the answer for one question affect the choice for the other questions?

Practice

A student can eliminate Choice A for all three questions. What is the probability of answering all three questions correctly? Compare this probability with the probability in the previous problem. What do you notice?

Dependent or Independent?

You have a bag of marbles. What is the probability that you pick blue marble (and replace it) and then a red marble?

Does choosing a marble and then replacing it change the number of marbles left?

Practice

What is the probability that you choosing a green marble (and replace it) and then choosing a yellow marble?