### SBAC MATH & Geometry: Pythagorean Theorem Practice A

Name \_\_\_\_\_

\_ Period \_\_\_\_ Date \_\_\_\_

## GEOMETRY: PYTHAGOREAN THEOREM A



G: Pythagorean Theorem A

## SBAC MATH & Geometry: Pythagorean Theorem Practice A

| lame                                                                                                                                                    | Period Date                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Example Stem 3:</b> A 13-foot ladder is lear<br>of the ladder is on the ground at a distance<br>the tree. The base of the tree and the gro<br>shown. | nce of 5 feet from the base of                                                                                                               |
| 13ft<br>13ft<br>5ft<br>5ft<br>5ft<br>5ft<br>5ft<br>5ft<br>5ft<br>5ft<br>5ft<br>5                                                                        | and the top of the ladder, <i>x</i> ,                                                                                                        |
| <b>Example Stem:</b> The table shows the side Determine whether the side lengths define                                                                 |                                                                                                                                              |
| Select Yes if it is a right triangle. Select Not triangle.                                                                                              | No if it cannot be a right                                                                                                                   |
| Triangle Side Lengths Y                                                                                                                                 | Yes No                                                                                                                                       |
|                                                                                                                                                         |                                                                                                                                              |
|                                                                                                                                                         |                                                                                                                                              |
|                                                                                                                                                         |                                                                                                                                              |
| A MARK STATE AND                                                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                        |
|                                                                                                                                                         | Example Stem 3: A 13-foot ladder is le<br>of the ladder is on the ground at a distant<br>the tree. The base of the tree and the gr<br>shown. |

G: Pythagorean Theorem A

## SBAC MATH & Geometry: Pythagorean Theorem Practice A

| N | lame Per                                                                                           | riod Date         |
|---|----------------------------------------------------------------------------------------------------|-------------------|
| 5 | Example Stem 1: A coordinate plane is shown with                                                   | h labeled points. |
|   | 6-<br>4-<br>2-<br><b>B</b>                                                                         | - ×               |
|   | -8-6-4-20 2 4 6 8<br>-8-6-4-2<br>-2<br>-4<br>-6-                                                   |                   |
|   | What is the distance between point A and point B oplane?                                           | n the coordinate  |
|   | A. 5<br>B. 6<br>C. 10<br>D. 14                                                                     |                   |
| 6 | Example Stem 2: What is the distance between per (-3, -4) on the coordinate plane?<br>A. 5<br>B. 6 | pints (5, 2) and  |
|   | B. 6<br>C. 10<br>D. 14                                                                             |                   |

G: Pythagorean Theorem A



G: Pythagorean Theorem A

SBAC MATH & Expressions & Equations: Exponents Practice A

Name \_\_\_\_\_ Date \_\_\_\_

## EXPRESSIONS & Equations: Exponents

] Example Stem: Select all expressions equivalent to (45 • 4-3)-2. A.  $\frac{1}{256}$ B. 256 C.  $4^{-10} \cdot 4^{6}$ D.  $4^3 \cdot 4^{-5}$ 2 Example Stem: Enter the value of n that makes the equation  $4^5 \bullet 4^n = 4^{15}$  true. 3 Example Stem 1: Select all possible values for x that solve the equation  $x^2 = 200$ . A. 10√20 B. 100√2 C. 10√2 D. √200

8EE: Exponents A

## SBAC MATH & Expressions & Equations: Exponents Practice A

| Name | e Period Date                                                                                                                                                                                                                                                                                                                                                   |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4    | <b>Example Stem 2:</b> Select <b>all</b> possible values for x in the equation $x^2 = 200$ .                                                                                                                                                                                                                                                                    |
|      | A. $10\sqrt{2}$<br>B. $10\sqrt{20}$<br>C. $20\sqrt{10}$<br>D. $-10\sqrt{2}$<br>E. $-10\sqrt{20}$<br>F. $-20\sqrt{10}$                                                                                                                                                                                                                                           |
| 5    | Example Stem: Select all possible values for x in the equation,<br>$x^3 = 250$ .<br>A. $5\sqrt[3]{2}$<br>B. $\sqrt[3]{250}$<br>C. $5\sqrt[3]{10}$<br>D. $25\sqrt[3]{10}$                                                                                                                                                                                        |
| 6    | <b>Example Stem:</b> How many times larger than $2 \times 10^3$ is $6 \times 10^6$ ?<br>A. $3 \times 10^2$<br>B. $3 \times 10^3$<br>C. $6 \times 10^6$<br>D. $12 \times 10^9$                                                                                                                                                                                   |
| 7    | Example Stem 1: Approximately $7.5 \times 10^5$ gallons of water flow<br>over a waterfall each second. There are $8.6 \times 10^4$ seconds in 1 day.<br>Enter the approximate number of gallons of water that flow over the<br>waterfall in 1 day.<br>A. $6.45 \times 10^{21}$<br>B. $6.45 \times 10^{20}$<br>C. $6.45 \times 10^{10}$<br>D. $6.45 \times 10^9$ |



## SBAC MATH & Expressions & Equations: Exponents Practice A

| Name                | e Period Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8                   | Example Stem 2: Which value is closest to (6 x 10 <sup>6</sup> ) + (2 x 10 <sup>4</sup> )?                                                                                                                                                                                                                                                                                                                                                                                               |
| CLAIM 2             | A. $8.0 \times 10^{10}$<br>B. $8.0 \times 10^{6}$<br>C. $6.0 \times 10^{10}$<br>D. $6.0 \times 10^{6}$                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>9</b><br>Claim 3 | Example Item 3D.2b (Grade 8)         Primary Target 3D (Content Domain EE), Secondary Target 1B (CCSS 8.EE.A), Tertiary Target 3C         Maggie claims that when you raise a whole number to a power, the result is always a greater number.         That is, $s^n > s$ . For example: $4^3 > 4$ $5^4 > 5$ $10^9 > 10$ Maggie's claim is not true for all values of $n$ and $s$ . For what values of $n$ and $s$ is Maggie's claim true? Complete the inequalities. $s > [ ]$ $n > [ ]$ |



SBAC MATH & Expressions & Equations: Exponents Practice B

Name

]

Period \_\_\_\_ Date \_\_\_\_

EE: Exponents B

# EXPRESSIONS & EQUATIONS: EXPONENTS B



Approximately  $7.5 \times 10^5$  gallons of water flow over a waterfall each second. There are  $8.6 \times 10^4$  seconds in 1 day. Select the approximate number of gallons of water that flow over the waterfall in 1 day.



- 6.45 × 10<sup>20</sup>
- © 6.45 × 10<sup>10</sup>
- 6.45 × 10<sup>9</sup>

