NT.		
112	nme:	

Chapter 3 Final Review

Multiple Choice

Identify the choice that best completes the statement or answers the question.

Find the sum of the interior angle measures of the polygon.

1.

a.	360°	с.	380°
b.	720°	d.	270°

2. What is the measure of $\angle 1$?

100° c. 180° d.

3. The figures are similar.

Name the word that matches the definition given.

- 6. A line that intersects two or more lines
 - a. transversal
 - b. interior angles

- d. interior angles of a polygon
- e. exterior angles of a polygon

c. exterior angles

f. convex polygon

Name: _____

7	11 71	· 11.1.1. · · · · ·	1 C	
1.				are formed on the inside of the parallel lines
	a.	transversal	d.	interior angles of a polygon
	b.	interior angles	e.	exterior angles of a polygon
	c.	exterior angles	f.	convex polygon
8.	Wł	· ·	l, foi	ar are formed on the outside of the parallel lines.
	a.	transversal	d.	interior angles of a polygon
	b.	interior angles	e.	exterior angles of a polygon
	c.	exterior angles	f.	convex polygon
9.	Th	e angles inside a polygon.		
	a.	transversal	d.	interior angles of a polygon
	b.	concave polygon	e.	exterior angles of a polygon
	c.	regular polygon	f.	convex polygon
10.	Th	e angles outside a polygon that are adjacent	to th	e interior angles.
	a.	transversal		interior angles of a polygon
	b.	concave polygon	e.	exterior angles of a polygon
	c.	regular polygon	f.	convex polygon
11.	Ar	polygon in which every line segment connec	ting	any two vertices lies entirely inside the polygon.
	a.		-	interior angles of a polygon
	b.	interior angles	e.	concave polygon
	c.	exterior angles	f.	convex polygon
12.	Ar	polygon in which at least one line segment c	onne	cting any two vertices lies outside the polygon.
		concave polygon		interior angles of a polygon
	b.	regular polygon	e.	exterior angles of a polygon
	с.	indirect measure	f.	convex polygon
13	Δr	polygon in which all the sides are congruent	and	all the interior angles are congruent
15.	a.	concave polygon		interior angles of a polygon
		regular polygon		exterior angles of a polygon
	с.	indirect measurement	с. f.	convex polygon
14.		uses similar figures to find a missing mea		
	a.	concave polygon	d.	interior angles of a polygon
	b.	regular polygon	e.	exterior angles of a polygon
	c.	indirect measurement	f.	convex polygon

15. Find the measure of the exterior angle.

a.	70°	c.	122°
b.	52°	d.	58°

16. Find the measure of the exterior angle.

a.	126°	c.	24°
b.	42°	d.	63°

17. Find the measure of the interior angle.

- 18. The interior angles of a regular polygon each measure 144°. How many sides does the polygon have?
 - a. 9 c. 12
 - b. 10 d. 11

The triangles are similar. Find the value of *x*.

22. A person standing 28 feet from a street light casts a shadow as shown. What is the height h of the street light? Assume the triangles are similar.

Short Answer

Use the figure to find the measure of the angle. Explain your reasoning.

23. ∠3

24. *∠*5

Ν	ame	
---	-----	--

25. ∠6

26. *∠*2

Find the measures of the interior angles of the polygon.

Find the measures of the exterior angles of the polygon.

32. Can a hexagon have angles that measure 85°, 62°, 135°, 95°, 173°, and 160°? Explain.

33. Five angles of a hexagon measures 150°, 82°, 127°, 99°, and 101°. Find the sixth angle measure.

Name: _

34. The painted lines that separate parking spaces are parallel. The measure of $\angle 1$ is 60°. What is the measure of $\angle 2$? Explain.

35. Error Analysis Describe and correct the error in finding the sum of the interior angle measures of a 19-gon.

	$S = n \bullet 180^{\circ}$
	$= 19 \bullet 180^{\circ}$
\land	= 3420°

36. Can an octagon have angles that measure 140°, 120°, 50°, 95°, 105°, 100°, 80°, and 150°? Explain.

37. Tell whether the triangles are similar. Explain.

38. How can you use similar triangles to find a missing measurement?

Chapter 3 Final Review Answer Section

MULTIPLE CHOICE

- 1. A
- 2. C
- 3. D
- 4. D
- 5. B
- 6. A
- 7. B
- 8. C
- 9. D
- 10. E
- 11. F
- 12. A
- 13. B
- 14. C
- 15. C
- 16. A
- 17. D
- 18. B
- 19. A
- 20. D
- 21. B
- 22. C

SHORT ANSWER

- 23. 85°; *Sample answer*: $\angle 6$ and the given angle are supplementary, and $\angle 6$ and $\angle 3$ are alternate interior angles.
- 24. 95°; $\angle 5$ and the given angle are vertical angles.
- 25. 85° ; $\angle 6$ and the given angle are supplementary.
- 26. 85°; *Sample answer*: $\angle 1$ and the given angle are alternate exterior angles, and $\angle 1$ and $\angle 2$ are supplementary.
- 27. $88.5^{\circ}, 100^{\circ}, 105^{\circ}, 98^{\circ}, 175^{\circ}, 142^{\circ}, 106^{\circ}, 265.5^{\circ}$
- 28. 60°, 85°, 120°, 101°, 174°
- 29. 106°; 128°; 126°
- 30. 114°, 120°, 126°
- 31. 63°, 83°, 105°, 109°
- 32. no; The sum of the angle measures must be 720° , not 710° .
- 33. 161°
- 34. 60°; Corresponding angles are congruent.

ID: A

- 35. The right side of the formula is $(n-2) \bullet 180^\circ$, not $n \bullet 180^\circ$. $S = (n-2) \bullet 180^\circ$
 - $=(19-2)\bullet 180^{\circ}$

= 3060°

- 36. no; The angles given add up to 840°, but the sum of the interior angles of an octagon is 1080°.
- 37. Yes. The triangles have two pairs of congruent angles.
- 38. Write a proportion that uses the missing measurement because the ratios of corresponding side lengths are equal.