7.2 FINDING CUBE ROOTS

Perfect Cubes

Perfect Squares that you should know

Cube Roots

Perfect Cube Roots that you should know

3√1	$\sqrt[3]{64}$	3√343
3√8	∛125	∛512
∛27	∛216	∛729
		3√1000

Do Now

Find the edge length of the cube.

1. Volume = 64,000 ft³ **2.** Volume =
$$\frac{1}{216}$$
 ft³

Finding Cube Roots

Find each cube root.

a. $\sqrt[3]{8}$

b. $\sqrt[3]{-27}$

c. $\sqrt[3]{\frac{1}{64}}$

Evaluating with Cube Roots

Evaluate each expression.

a.
$$2\sqrt[3]{-216} - 3$$

b. $(\sqrt[3]{125})^3 + 21$

On Your Own

Find the cube root. 1. $\sqrt[3]{1}$ **2.** $\sqrt[3]{-343}$

3.
$$\sqrt[3]{-\frac{27}{1000}}$$

Evaluate the expression.

4. $18 - 4\sqrt[3]{8}$ **5.** $(\sqrt[3]{-64})^3 + 43$ **6.** $5\sqrt[3]{512} - 19$

Evaluating with Cube Roots

Evaluate
$$\frac{x}{4} + \sqrt[3]{\frac{x}{3}}$$
 when $x = 192$.

On Your Own

Evaluate the expression for the given value of the variable.

7. $\sqrt[3]{8y} + y, y = 64$

8. $2b - \sqrt[3]{9b}, b = -3$

Critical Thinking...

Find the surface area of the baseball display case.

With Your Partner

9. The volume of a music box that is shaped like a cube is 512 cubic centimeters. Find the surface area of the music box.

Did You Understand?

Explain the difference between $\sqrt{64}$ and $\sqrt[3]{64}.$