

In your own words, describe what a function is? How is it different from other relationships?

1) a) What variable represents the input in a function?

b) What are two other names for the input?

2) a) What variable represents the output in a function?

b) What are two other names for the output?

Tell whether the pairing is a function.

3. $\{(1, 3), (2, 0), (4, 4)\}$ **4.** $\{(-1, 1), (7, 2), (8, 5)\}$ **5.** $\{(0, -5), (2, -1), (9, 7)\}$ Determine whether the relation is a function.

6.	x	2	3	4	5
	y	4	7	10	13

7.	x	3	4	3	2
	y	-2	3	2	4

List the ordered pairs shown in the mapping diagram.

Draw a mapping diagram of the ordered pairs.

10)
$$(-15, -17), (-9, -11), (-6, 4), (-2, 8)$$
 11) $(-5, 3), (-3, 1), (2, 1), (6, 3)$

Draw a mapping diagram of the ordered pairs derived from the graph.

Find the value of *y* for the given value of *x*.

13)
$$y = 10x; x = -3$$
 14) $y = 6 - 2x; x = 11$

Graph the function

15)
$$y = x + 1$$

Graph the function

16)
$$y = -3x$$

Graph the function

17)
$$y = 3x - 2$$

y-int = _____

Rise = _____

Run = _____

Slope = _____

y-int = _____