

Relations & Functions

Functions

Functions

An <u>ordered pair</u> is the combination of the input and output written in the form (x,y).

x	-1	0	1	4	6
у	1	2	3	6	8

a) Write the table as a set of ordered pairs

b) Identify the domain and range of the relation

Domain - _____

Range - _____

Functions

Not all relations are functions.

In order for it to be a **<u>FUNCTION</u>**, for every input **x** there has to be one output **y**.

Decide among these charts, which ones are functions.

Input	Output	Input	Output		Input	Output	
2	6	2	8	-	2	0	
3	9	3	8		2	1	
4	12	4	8		3	2	
5	15	5	8		3	3	
6	18	6	8		4	4	

Functions

Not all relations are functions.

In order for it to be a **FUNCTION**, for every input **x** there has to be one output **y**.

Decide if the following ordered pairs are functions. Explain.

- a) (0,3), (1,4), (2,5), (3,6)
- b) (0,4), (1,7), (1,12), (2,6)

Functions

Not all relations are functions.

In order for it to be a **<u>FUNCTION</u>**, for every input **x** there has to be one output **y**.

Which relation is a function?

- a) {(-3,5), (5,-3), (-3,-3)}
- b) {(2,3), (2,4), (2,5)}
- c) {(5,7), (6,8), (7,9)}
- d) {(2,6), (3,5), (2,5)}

Functions

Not all relations are functions.

In order for it to be a **<u>FUNCTION</u>**, for every input **x** there has to be one output **y**.

Decide whether the relation shown is a function. If it is a function, give the domain and range.

Functions

1) List the ordered pairs shown in the mapping diagram.

Functions

2) Determine whether each relation is a function.

Functions

Consider the mapping diagram at the left.

a. Determine whether the relation is a function.

b. Describe the pattern of inputs and outputs in the mapping diagram.

Practice

The table shows the amount of money Miguel earns at his job for several numbers of hours.

Hours	2	5	7	8
Amount (\$)	14	35	49	56

a) Write the table as a set of ordered pairs.

b) Identify the domain and range of the relation.

Practice

The domain of the function rule y = x + 4 is -2, 0, 2, 3, and 6. Make a table of ordered pairs that represents the function. Then identify the range of the function.

x			
<i>y</i> = <i>x</i> +4			

Understanding

Words that mean " x ":	Words that mean " <i>y</i> ":
1	1
2	2
3	3

At a community center, art lessons are offered at night for a fee of \$12 per lesson.

- a) Write a rule for the amount *y* you will spend as a function of the number *x* of lessons you attend.
- b) Identify the independent and dependent variables.