Name

Answers

Date

Chapter 5 Review

For problems #1-2, solve the systems of linear equations by *graphing*.

For problems #3-6, solve the systems of linear equations by *substitution*.

5)
$$x + 2y = -8$$

 $y = 2x + 16$
 $y = 2x + 16$
 $x + 2(2x + 16) = -8$
 $x + 2(2x + 16) = -8$
 $5x + 52 = -8$
 $-52 - 52$
 $\frac{5x}{5} - \frac{5}{5}$
 $x = -8$
 $y = 0$
 $5x + 52 = -8$
 $-52 - 52$
 $\frac{5x}{5} - \frac{5}{5}$
 $x = -8$
 $y = 0$
 $(-8, 0)$
 $x = -8$
 $(-8, 0)$
 $x = -8$
 $(-8, 0)$
 $x = -8$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$
 $(-8, 0)$

For problems #7-10, solve the system of linear equations by *elimination*.

7)
$$x + 4y = 4$$

 $-x + 2y = 8$
 $y = -3x - 4$
 $\frac{4y}{6} = \frac{12}{6}$
 $y = -3x - 4$
 $\frac{4y}{6} = \frac{12}{6}$
 $y = -3x - 4$
 $\frac{1}{5x} + \frac{1}{5x} = \frac{1}{5x}$
 $y = -3x - 4$
 $\frac{1}{5x} + \frac{1}{5x} = \frac{1}{5x}$
 $\frac{1}{5x} - \frac{1}{5x} - \frac{1}{5x}$
 $\frac{1}{5x} - \frac{1}{5x}$
 $\frac{1}{5x} - \frac{1}{5x} - \frac{1}{5x}$
 $\frac{1}{5x} - \frac{1}{5x}$
 $\frac{1}{5$

For problems #11-13, write a system of linear equations and solve using elimination or substitution method.

11) The table shows the purchases made by two customers at a meat counter. Determine from the table the amount that a slice of turkey and ham would cost.

	Sliced Turkey (pounds)	Sliced Ham (pounds)	Total Cost	4t + 1h = 8 -2 (2t + 4h = 17)
tomer 1	4	1	\$8	-2 (2+ + 1n - 11)
tomer 2	2	4	\$11	→ 4t + 1h = 8 → -4t - 8h = -22
	slice of the		-	$\frac{-7h}{-7} = \frac{-19}{-7}$
	sliced have	n	44	h=2/ 2-2
-	> for	s for sliced her	for sliced hern for sliced turkey	s for sliced here

You and your friend are in line behind each other at Pizza My Heart. Your friend's family gets 2 slices of 12) pizza and 3 salads for \$22. Your family gets 3 slices of pizza and 2 salads for \$20.50. How much is a slice of pizza? How much is a salad?

Let
$$p = cost$$
 of a slice of pizza
 $s = cost$ of a salad
 $3(2p + 3s = 22) \rightarrow 6p + 2s' = 66$
 $-2(3p + 2s = 20.50) \rightarrow -6p - 4s = -4/$
 $55 = 25$
 $55 = 25$
 $55 = 25$
 $55 = 25$
 $55 = 25$
 $55 = 25$
 $55 = 25$
 $6p + 9(s) = 66$
 $-8s - 45$
 $5s = 25$
 $5s = 5$
 $6p + 9(s) = 66$
 $-8s - 45$
 $-8s - 45$
 $5s = 5$
 $6p = 2/$
 $5s = 5$
 $6p = 2/$
 $5s = 3.5$

13) Money Bags has 27 dimes and nickels in his coin purse worth \$2.30. How many nickels and dimes does

cents he have? n = # of nickels -5(n+d = 27) d = # of dimes 5n + 10d = 2307 nickels 7 nickels 7 nickels -5n-5d=-130 5n + 10d = 2305d = 100-d=20n+20=27 -70 -70 n = 7