

y-axis

5

3

2

-1

-2

-3

-4

B

Chapters 4 & 6 Review (Pt 1)

2) Graph the linear equation using an INPUT-OUTPUT TABLE.

y = -x + 4

y-axis

3) Graph the linear equation using an INPUT-OUTPUT TABLE.

Graphing Using a Chart

y = 2x - 3

1) Graph the linear equation using an INPUT-OUTPUT TABLE.

Graphing Horizontal and Vertical Lines

6) x = 3

SLOPE OF A LINE

Find the slope of each line.

Find the slope between the two points:

y₂ -

 $x_2 - x$

m

Practice

Determine which lines are parallel.

Identify if the following is a proportional relationship.

On Your Own

Work with a partner. Tell whether x and y are in a proportional relationship. Explain your reasoning.

e.	Laps, <i>x</i>	1	2	3	4	f.	Cups of Sugar, <i>x</i>	1	1	1-1	2	
	Time	90 2	200	00 325 480	480		oupo or ougur, x	2	1	2	2	
	(seconds), y	70	200		400		Cups of Flour, y	1	2	3	4	

- 15) CARS After it is purchased, the value of a new car decreases \$4000 each year. After 3 years, the car is worth \$18,000.
 - **a.** Write an equation that represents the value *V* (in dollars) of the car x years after it is purchased.
 - b. What was the original value of the car?

Graphing Linear Equations

Graph the following equation using slope-intercept form.

y-axis x-axis 5

-1

b

-4 -3 -2

Graphing Linear Equations

Graph the following equation using slope-intercept form.

17)
$$y = -3x + 1$$

Graphing Linear Equations

Graph the following equation using slope-intercept form.

Example

20) Write an equation of the line shown in slopeintercept form.

APPLICATION

21) The cost *y* (in dollars) of taking a taxi *x* miles is *y* = 2.5*x* + 2.
(a) Graph the equation. (b) Interpret the *y*-intercept and the slope.

	 	 	-	 	

Practice

22)
$$6x - 4y = 12$$

x-intercept

Plug-in y=0 into the equation and solve for **x**.

<u>y-intercept</u>

Plug-in **x=0** into the equation and solve for **y**.

Graph the equation using the intercepts.

Practice

23)
$$8x + 4y = 24$$

<u>**x-intercept**</u> Plug-in y=0 into the equation and solve for **x**.

				≜ °	Т	Т	
		ТТ		5			Т
				1			
	6-5	-4 -3	-2 -1	1	23	45	6
F					\top		
				-4			

<u>y-intercept</u> Plug-in **x=0** into the equation and solve for <u>y</u>.

Graph the equation using the intercepts.