

Graphing Proportional Relationships

Solve for x.

1) $\frac{x}{21} = \frac{3}{9}$

2) $\frac{4}{x} = \frac{8}{20}$

Solve for x.

3)
$$2(x-4) = 6$$
 4) $7(x-9) = -77$

- 1) Cross-multiply
- 2) Solve like a multi-step equation

5)
$$\frac{2}{5} = \frac{4}{x+1}$$

$$6) \quad \frac{21}{y-8} = 3$$

FINDING MISSING NUMBERS $m = \frac{y_2 - y_1}{m}$

Find the value of k so that the line passes on the following point with the given slope.

 $x_2 - x_1$

7) (2,3)*and* (*k*,9); slope =
$$\frac{3}{2}$$

FINDING MISSING NUMBERS $m = \frac{y_2 - y_1}{m}$

Find the value of k so that the line passes on the following point with the given slope.

 $x_2 - x_1$

8) (8,1)*and* (
$$k$$
,7); slope = $-\frac{1}{2}$

Let's say you go to Jack in the Box. You get 2 tacos for every dollar.

 Make a T-chart of this relationship if x represents the cost and y represents the number of tacos.

2) Make a line graph of this with at least three points and make sure to label the graph.

 Look at your T-chart, what did you have to multiply to the x values to get a y value. 4) Write an equation showing this this relation ship.

Direct Variation (Proportional Relationship)

A direct variation or **proportional relationship** is a relationship between two quantities. There is a clear number being multiplied to **x** to get **y**.

- The constant of proportionality on a graph is also known as the ______.
- The graph of proportional relationship is always positive and always goes through the origin.

Tell whether x and y show direct variation. Explain your reasoning.

b.

a.	x	1	2	3	4
	У	-2	0	2	4

Plot the points. Draw a line through the points.

• The line does *not* pass through the origin. So, *x* and *y* do *not* show direct variation.

x	0	2	4	6
У	0	2	4	6

Plot the points. Draw a line through the points.

• The line passes through the origin. So, *x* and *y* show direct variation.

<u>Practice</u>

Tell whether *x* and *y* are in a proportional relationship. Explain your reasoning. If so, write an equation that represents the relationship.

Work with a partner. Tell whether x and y are in a proportional relationship. Explain your reasoning.

d.

e.	Laps, <i>x</i>	1	2	3	4
	Time (seconds), <i>y</i>	90	200	325	480

f.	Cups of Sugar, <i>x</i>	$\frac{1}{2}$	1	$1\frac{1}{2}$	2
	Cups of Flour, y	1	2	3	4

The cost *y* (in dollars) for *x* gigabytes of data on an Internet plan is represented by *y* = 10*x*. Graph the equation and interpret the slope.

