

What are ratios?

What is the ratio of stars to moons? Write this 3 different ways.

IN RATIOS, YOU ARE TO LEAVE ANY RATIOS "IMPROPER".

What is the ratio of clouds, lightning bolts, and suns?

Simplifying Ratios

Ratios can act like fractions because they can be simplified like fractions.

To simplify a ratio, write it like a fraction and then simplify.

Converting Units Before Simplifying

When you have ratios that can be converted from one to the other...CONVERT AND THEN SIMPLIFY!

4) 2*hours* :10min

5) 8*in* : 4 *ft*

What are rates?

15*miles*

A rate is a ratio comparing two different things.

8 dogs: 7 cats

1hour 17 girls to 12 boys

If you are comparing the same thing, it's a ratio but not a rate.

 3min
 5cows:7cows

 15min

A unit rate is a rate with a denominator of 1. You use this to find how much you get for 1 thing.

<u>Example 1</u>

You are traveling 20 miles per hour for 4 hours. What is your unit rate?

 $\frac{20 \text{ miles}}{11}$

4*hours*

You paid \$9.00 for 6 doughnuts. What is the unit rate for a doughnut?

\$9.00 6*doughnuts*

$$Average rate = \frac{Distance}{Time}$$

A skater took 2 minutes 30 seconds to complete a 1500 meter race. What was the skater's average speed?

Average speed = _____

A store sells the same pasta in two ways: 10 pounds of bulk pasta for \$15.00 or 2 pounds for packaged pasta for \$3.98. Which one is the better buy? (Which one is cheaper for the unit rate?)

\$15.00 10*lbs* \$3.98 2*lbs*

$\frac{3}{5} = \frac{6}{10}$

"3 is to 5 as 6 is to 10"

<u>Using Cross Products to</u> <u>Solve Proportions</u>

8) $\frac{x}{25} = \frac{6}{10}$

<u>Using Cross Products to</u> <u>Solve Proportions</u>

<u>Using Cross Products to</u> <u>Solve Proportions</u>

$10) \quad \frac{x-5}{12} = \frac{x+2}{5}$

Jim bought 8 tacos for \$4. Unfortunately, he was still hungry. So, he bought 6 more tacos. How much did he pay for the 6 tacos?

A person who weighs 105 pounds on Earth would weigh about 17.5 on the moon. About how much would a 60 pound dog weigh on the moon?

Proportional Relationships

Recall that you can graph the values from a ratio table.

The structure in the ratio table shows why the graph has a constant *rate of change*. You can use the constant rate of change to show that the graph passes through the origin. The graph of every proportional relationship is a line through the origin.

Proportional Relationships

Use a graph to tell whether x and y are in a proportional relationship.

b.

Plot (2, 6), (4, 8), and (6, 10). Draw a line through the points.

The graph is a line that does not pass through the origin.

So, *x* and *y* are not in a proportional relationship.

x	1	2	3
у	2	4	6

Plot (1, 2), (2, 4), and (3, 6). Draw a line through the points.

The graph is a line that passes through the origin.

- ÷-
- So, *x* and *y* are in a proportional relationship.