15.4

Compound Events

Do Now

1. An event has a theoretical probability of 0.5. What does this mean?

2. Describe an event that has a theoretical probability of 1/4.

3. A pollster surveys randomly selected individuals about an upcoming election. Do you think the pollster will use experimental probability or theoretical probability to make predictions? Explain.

Learning Target:

- I can use tree diagrams, tables, or a formula to find the number of possible outcomes.
- I can find probabilities of compound events.

Key	Voca	bulary	/ &	Idea:
-----	------	--------	-----	-------

of all

SAMPLE SPACE

The

or an	<u> </u>	
•		
You can use	and	to find
the sample space	of 2 or more events.	

Λf

Or

Finding a Sample Space

Crust

You randomly choose a crust and style of pizza. Find the sample space. How many different pizzas are possible?

Use a tree diagram to find the sample space.

Style Outcome

Crust

Style

HawaiianMexicanPepperoniVeggie

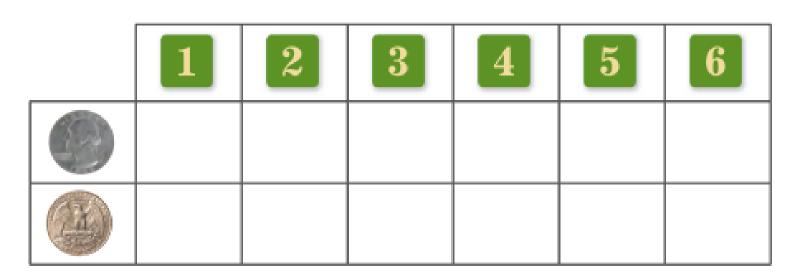
Thin CrustStuffed Crust

Finding a Sample Space

Practice

The pizza shop adds a deep dish crust. Find the sample space. How many pizzas are possible?

Crust Style Outcome


Key Vocabulary & Idea:

Fundamental Counting Principle

Another way to find the		of	
-			
	•		

An event M has m possible outcomes. An event N has n possible outcomes, the total number of outcomes of event M followed by event N is $m \times n$.

Find the total number of possible outcomes of rolling a number cube and flipping a coin.

Practice

What is the probability of rolling at most 4 and flipping heads?

How many different outfits can you make from the T-shirts, jeans, and shoes in the closet?

Use the Fundamental Counting Principle. Identify the number of possible outcomes for each event.

Practice

How many different outfits can you make from 4 T-shirts, 5 pairs of jeans, and 5 pairs of shoes?

Key Vocabulary & Idea:

Compound Event

A compound eve	ent consists of	or	-	
As with a single	•			pound
event is the	of the		of	
to	the	of		

What is the probability (from a previous example) of rolling a number greater than 4 and flipping tails??

How many favorable outcomes in the sample space?

	1	$\left[2\right]$	3	$\boxed{4}$	5	6
1						

Practice

1) You roll 2 number cubes. What is the probability of rolling double threes?

Practice

2) You flip three nickels. What is the probability of flipping two heads and one tails? Use a tree diagram to find the sample space.

First Flip

Second Flip

Third Flip

Outcome

Practice

3) You flip three nickels. What is the probability of flipping at least two tails?

Use a tree diagram to find the sample space.