

Activity Day

What does this mean?

mi

h

What does this mean?

6cups of sugar

3*donuts*

Evaluate.

1) $\frac{32}{4}$

2) $\frac{15}{\frac{1}{2}}$

Review

Evaluate.

3) $\frac{\frac{6}{20}}{\frac{3}{15}}$

5.1 Ratios and Rates For use with Activity 5.1

Essential Question How do rates help you describe real-life problems?

ACTIVITY: Finding Reasonable Rates

Work with a partner.

- **a.** Match each description with a verbal rate.
- **b.** Match each verbal rate with a numerical rate.
- **c.** Give a reasonable numerical rate for each description. Then give an unreasonable rate.

Description	Verbal Rate	Numerical Rate	
Your running rate in a 100-meter dash	Dollars per year	$=\frac{1}{yr}$ in.	
The fertilization rate for an apple orchard	Inches per year	$=$ $\frac{1}{acre}$ lb	
The average pay rate for a professional athlete	Meters per second	= <u>\$</u> yr	
The average rainfall rate in a rainforest	Pounds per acre	$=$ $\frac{1}{\sec}$ m	

ACTIVITY: Simplifying Expressions That Contain Fractions

Work with a partner. Describe a situation where the given expression may apply. Show how you can rewrite each expression as a division problem. Then simplify and interpret your result.

a.
$$\frac{\frac{1}{2}c}{4 \text{ fl oz}}$$

4

b.
$$\frac{2 \text{ in.}}{\frac{3}{4} \sec}$$

c. $\frac{\frac{3}{8} \text{ c sugar}}{\frac{3}{5} \text{ c flour}}$
d. $\frac{\frac{5}{6} \text{ gal}}{\frac{3}{2}}$

$$\frac{6}{\frac{2}{3}} \sec^{\frac{2}{3}}$$

3 ACTIVITY: Using Ratio Tables to Find Equivalent Rates

Work with a partner. A communications satellite in orbit travels about 18 miles every 4 seconds.

a. Identify the rate in this problem.

b. Recall that you can use *ratio tables* to find and organize equivalent ratios and rates. Complete the ratio table below.

Time (seconds)	4	8	12	16	20
Distance (miles)					

c. How can you use a ratio table to find the speed of the satellite in miles per minute? miles per hour?

d. How far does the satellite travel in 1 second? Solve this problem (1) by using a ratio table and (2) by evaluating a quotient.

e. How far does the satellite travel in $\frac{1}{2}$ second? Explain your steps.

ACTIVITY: Unit Analysis

4

Work with a partner. Describe a situation where the product may apply. Then find each product and list the units.

a. 10 gal
$$\times \frac{22 \text{ mi}}{\text{gal}}$$

b.
$$\frac{7}{2}$$
 lb $\times \frac{\$3}{\frac{1}{2}}$ lb

c.
$$\frac{1}{2} \sec \times \frac{30 \text{ ft}^2}{\text{sec}}$$