<u> Midyear Final Review – Chapters 6</u>

Part A

Complete each statement. *Give an answer besides square.

1.	In an isosceles triangle, the base angles are —?—.
2.	The diagonals of a parallelogram —?— each other.
3.	Each angle of a regular decagon measures —?—.
4.	The length of a midsegment of a trapezoid is the —?—of the lengths of the bases.
5.	The vertex angles of a kite are —?— by the diagonal.
6.	The consecutive angles of a parallelogram are —?—.
7.	The length of a midsegment between two sides of a triangle is —?— the length of the third side.
8.	*The diagonals of a —?— are perpendicular bisectors of each other.
9.	The opposite angles of a parallelogram are —?—.
10.	The sum of the measures of the angles of a hexagon is —?—.
11.	The midsegment of a trapezoid is —?— to the two bases.
12.	The nonvertex angles of a kite are —?—.
13.	*The diagonals of a —?— are equal in length.
14.	The three midsegments of a triangle divide the triangle into —?—.
15.	An equiangular quadrilateral is usually called a —?—.

Part B

Determine the measure of each lettered angle in the figure below.

a.	e.
b.	f.
с.	g.
d.	h.

Part C

- 1–3. Give the value for each variable indicated.
- 1. Perimeter = 64

4. A regular hexagonal mirror frame is to be built from strips of 2-inch-wide pine lattice. At what angles *a* and *b* should the lattice be cut?

The figures in Problems 5 and 6 are kites. Find *x* and *y* for each.

The figures in Problems 7 and 8 are isosceles trapezoids.

Find the missing values

8. Perimeter = 105 cm x =

Part D

Identify each statement as true or false

1.	A geometric construction uses a protractor and ruler.	
2.	The shortest distance from a point to a line is the distance measured along the perpendicular from the point to the line.	
3.	Every point on a median in a triangle is equally distant from the sides of an angle.	
4.	The circumcenter is equally distant from all three sides of a triangle.	
5.	The centroid of a triangle divides each median into two parts, so that the shortest part is half the largest part.	
6.	It is not possible to construct an angle of 7.5° using a compass and a straight edge.	
7.	A trapezoid is a quadrilateral having exactly one pair of parallel sides.	
8.	In a right triangle the circumcenter is located at the midpoint of the side opposite the right angle.	
9.	If a point is equally distant from the endpoints of a segment, then it must be the midpoint of the segment.	
10.	The incenter of a triangle is also the "center of mass" of the triangle.	

Part E

I. Complete the following proof				
Given Quad XYZW is		<u>Statements</u>	Reas	<u>ons</u>
a parallelogram				
	1.	Quad XYZW is	1.	Given
Prove: Opposite angles		a parallelogram		
are congruent	2.	\overline{WX} // \overline{ZY}	2.	
W Z	3.	$\angle 3 \cong \angle 4$	3.	
5 2 3	4.	\overline{WZ} // \overline{XY}	4.	
	5.	$\angle 1 \cong \angle 2$	5.	
$\sqrt{\frac{4}{1}}$ 6 V	6.	$\overline{ZX} \cong \overline{ZX}$	6.	
	7.		7.	
	8.		8.	

II. Complete the following proof

III. Complete the following proof

S

Sta	tements	Reasons		
1.	Parallelogram ABCD	1.	Given	
2.	$\overline{AB} \cong \overline{CD}$	2.		
3.	$\angle \text{DFC} \cong \angle \text{BFA}$	3.		
4.	$\overline{\text{CD}} \parallel \overline{\text{AB}}$	4.		
5.	$\angle CAB \cong \angle DCA$	5.		
6.	$\Delta \text{CDF} \cong \Delta \text{ABF}$	6.		
7.	$\overline{CF}\cong\overline{AF}$	8.		
8.	$\angle \text{GFC} \cong \angle \text{AFE}$	9.		
9.	$\Delta \text{ GFC} \cong \Delta \text{EFA}$	10.		
10.	$\overline{\mathrm{EF}} \cong \overline{\mathrm{FG}}$	11.		