9.5 – Composition of Transformations

Find the image of Z(1, 1) after two reflections, first across line ℓ_1 , and then across line ℓ_2 .

1) $\ell_1 : x = 2, \ell_2 : y$ -axis

3) $\ell_1 : y = 2, \, \ell_2 : x$ -axis

5) $\ell_1 : x = 3, \ell_2 : y = 2$

2) $\ell_1 : x = -2, \, \ell_2 : x$ -axis

4) $\ell_1 : y = -3, \ell_2 : y$ -axis

6) $\ell_1: x = -1, \ell_2: y = -3$

In the following, graph ΔRST with vertices R(2,3), S(-2,1) and T(-1,5) and its image after the composition. (Do each one of these on a separate coordinated plane.)

7) Translation: $(x, y) \rightarrow (x-2, y-1)$ Rotation: 90° counter-clockwise about the origin

- 11) In your own words, what is a composition of transformations?
- 12) What is a glide reflection?

8) Reflection: Across the line y = xRotation: 180° about the origin

10) Translation: $(x, y) \rightarrow (x+4, y+2)$ Rotation: 270° clockwise about the origin **y**

13) State the "Reflections over Parallel Lines Theorem":

- 14) State the "Reflection over the Axes Theorem":
- 15) Is it possible to have an object that does not have of rotational symmetry? Explain your reasoning.
- 16) What kind of polygon has an angle of rotation of 72° ?
- 17) A triangle is reflected across line ℓ and then across line *m*. If this composition of reflections is a translation, what is true about *m* and ℓ ?