

Exploring Symmetry, Translations, Vectors & Reflections

When parts of a figure are _ other around a line.

of each

A figure can have more than one line of symmetry.

How about these?

Rotational Symmetry

A figure is said to have rotational (or point) symmetry when you are able to _____ an object to see if it will eventually look the same before it can be turned _____.

How to figure out the angle of rotation

Do these have rotational symmetry?

What are Transformations?

<u>Translations on a Coordinate</u> <u>Plane Using a Rule</u>

Rule: (x,y)→(x+6, y-5) Afterwards...

(x,y)→(x-8, y-2)

A quantity that has direction and magnitude

Name the following vectors and indicate their component form.

<u>Translations on a Coordinate</u> <u>Plane Using a Vector</u>

Translate using the components of the vector:

Mirror image of an object across a line or a point

Rule: **Reflect across** the y-axis

Rule: Reflect across x=2

Rule: Reflect across y=-1

Rule: Reflect across y=x

Tell whether one figure is a reflection of the other figure.

Draw the figure and its reflection in the x-axis. Identify the coordinates of the image.

Draw the figure and its reflection in the y-axis. Identify the coordinates of the image.

5.
$$X(0, -1), Y(2, 3), Z(4, -2)$$

The coordinates of a point and its image are given. Is the reflection in the x-axis or y-axis?

10. Translate the triangle 2 units left and 1 unit up. Then reflect the image in the *x*-axis. Graph the resulting triangle.

