Name_____

Date____

Chapter 6 Review

Complete each statement.

- 1. The sum of the angle measures of an octagon is_____.
- 2. Each angle of a regular pentagon measures _____?
- 3. The length of a midsegment of a trapezoid is the _____ of the lengths of the bases.
- 4. The length of a midsegment between two sides of a triangle is ______ the length of the third side.
- 5. The sum of the measures of the angles of a heptagon is _____.
- 6. The measure of one angle in a regular decagon is _____.
- 7. The midsegment of a trapezoid is ______ to the two bases.

State whether each statement is always true, sometimes true, or never true.

- 8. A quadrilateral with two pairs of opposite sides congruent is a parallelogram.
- 9. A quadrilateral with one pair of opposite sides congruent and one pair parallel is a parallelogram.
- 10. A rectangle is a rhombus.
- 11. The midsegment of a trapezoid is longer than each base.
- 12. Base angles of a trapezoid are congruent.

13. Put a check in the box if the shape always has the given property.

Property	Parallelogram	Rectangle	Rhombus	Square	Kite	Trapezoid
All sides are \cong .						
Both pairs of opp. sides are \cong .						
Both pairs of opp. sides are .						
Exactly 1 pair of opp. sides .						
All angles are \cong .						
Exactly 1 pair of opp. angles \cong .						
Diagonals perpendicular.						
Diagonals are \cong .						
Diagonals bisect each other.						

- 14. How many sides does a regular polygon have if each exterior angle measures 30°?
- 18. In the trapezoid, find the values of

а

31

46

y = _____

w =

55°

a = _____

x =

′60°

19. Find the missing values.

16. How many sides does a convex polygon have if the sum of all of its angles is 1980°?

HOPE is a parallelogram. Find the lengths or angle measures.

- 20. If $m \angle 3 = 35^{\circ}$ and $m \angle 4 = 40^{\circ}$, then $m \angle 2 =$
- 21. If $m \angle HEP = 108^\circ$, then $m \angle EPO =$
- 22. If HP = 8, then SP =

17. The measures of the interior angles of a quadrilateral are x° , $2x^{\circ}$, $3x^{\circ}$, $4x^{\circ}$. What is the measure of largest interior angle?

23. Find the values of

24. If the figure below is a kite as shown, find the missing values.

25. Is enough information given in the diagram to show that the quadrilateral *JKLM* is a square? Explain your reasoning.

26. Which Venn diagram is NOT correct?

- 27. Name the facts that you know about all parallelograms
- a.
- b.
- c.
- d.
- e.
- 28. Rhombus diagonals have the following properties which may or may not be true for all parallelograms

a.

b.

Use the following diagram for problems #29-31.

 \overline{MN} is the midsegment of trapezoid ZOID.

- 29. If ZO=8 and MN=11, then DI=_____.
- 30. If ZO=8, then TN=_____.
- 31. If trapezoid ZOID is isosceles and $m \angle D = 80^\circ$, then $m \angle O =$ _____.

In problems #32-35, you could prove that quadrilateral SANG is a parallelogram if one more fact, in addition to those stated, were given. State the fact.

- 32. GN = 9; NA = 5; SA = 9
- 33. $\angle ASG \cong \angle GNA$
- 34. $\overline{SZ} \cong \overline{NZ}$
- 35. $\overline{SA} \parallel \overline{GN}$; SA = 17

36. Find the missing angles.

<i>a</i> =	<i>k</i> =
<i>b</i> =	<i>m</i> =
<i>c</i> =	<i>n</i> =
<i>d</i> =	<i>p</i> =
<i>e</i> =	q=
<i>f</i> =	<i>r</i> =
<i>g</i> =	<i>s</i> =
<i>h</i> =	<i>t</i> =
<i>i</i> =	<i>u</i> =
<i>j</i> =	<i>v</i> =

37) Given: Parallelogram PQRS $\overline{QR} \cong \overline{QT}$

Prove: $\angle S \cong \angle T$

Statement	Reasons

38) Given: Parallelogram AECF $\overline{FD} \cong \overline{BE}$ Prove: $\overline{AD} \cong \overline{BC}$

Statement	Reasons

39)	Given: $\angle TSW \cong \angle VWU$ $\angle STV \cong \angle WVU$	
	Prove: $\overline{TS} \parallel \overline{VW}$	s III III U
	Assume temporarily that	**
	Then by the Converse of the	, $\angle TSW$ and $\angle VWU$ cannot be
	This contradicts the given information that	
	Therefore, $\overline{TS} \parallel \overline{VW}$.	

40) By making an indirect proof, show that a quadrilateral cannot have all obtuse angles.