Date_

6.3 – Proving Quadrilaterals are Parallelograms

For what values of *x* and *y* make the quadrilateral a parallelogram?

5)
$$(12y + 8)^{\circ}$$
$$(5y + 2)^{\circ}$$

6)

Can you prove that the quadrilateral is a parallelogram based on the given information? Explain.

9)

12) $\overline{AE} \cong \overline{EC}, \overline{BE} \cong \overline{ED}$

13) Write a two-column proof.

14) Write a two-column proof.

Given: $\angle A \cong \angle FDE$

F is the midpoint of \overline{AD} . *D* is the midpoint of \overline{CE} . Prove: *ABCD* is a parallelogram.

- 15) An octagon star is shown in the figure on the right.
 - a) Find $m \angle FCG$, $m \angle BCF$, and $m \angle D$.

b) State which theorem you can use to show that the quadrilateral is a parallelogram.

c) The length of \overline{AB} is three times the length of \overline{AD} . Write an expression for the perimeter of parallelogram *ABCD* in terms of the variable *x*.

