

Angle Bisectors of Triangles (Part 1)

The distance from a point to a line is the length of the ______ segment from the point to the line.

Angle Bisector Observations

If you were given an angle bisector of a segment, what could you say about the distance of any point on the angle bisector to the sides of that segment?

Proof of the Angle Bisector Theorem

Given: \overrightarrow{AD} bisects $\angle BAC$ $\overrightarrow{DB} \perp \overrightarrow{AB}$ and $\overrightarrow{DC} \perp \overrightarrow{AC}$ Prove: $DB = DC$	
Statements	Reasons

Angle Bisector Observations

If points were equidistant from the sides of an angle, on what object must those points lie on?

Proof of the Perpendicular Bisector Theorem

Given: $\overline{DB} \perp \overline{AB}$ and $\overline{DC} \perp \overline{AC}$ DB = DC

Prove: \overrightarrow{AD} bisects $\angle BAC$

Reasons

н

<u>Angle Bisector Theorem</u>

If a point lies on the

Converse of the Angle Bisector Theorem

from the two sides of the angle.

, then it

If a point is in the interior of an angle and is ______ from the two sides of the angle,

then it lies on

İS

Practice

Find the indicated measure. Explain your reasoning.

Practice

Find the indicated measure. Explain your reasoning.

