ISOSCELES AND EQUILATERAL TRIANGLES

- 6. Which of the following figures has the greatest number of lines of symmetry?
 - (A) equilateral triangle (B) non-square rhombus
 - (C) non-square rectangle (D) isosceles trapezoid (E) square
- 7. Using only pennies, nickels, dimes, and quarters, what is the smallest number of coins Freddie would need so he could pay any amount of money less than a dollar?

(A) 6 (B) 10 (C) 15 (D) 25 (E) 99

Review: Definition of an Isosceles Triangle A triangle with two congruent sides.

Parts of an Isosceles Triangle

(Go to sketch 4.5 – Isosceles Triangles)

What would you conjecture is the relationship of the base angles of an isosceles triangle?

Complete the following:

If a triangle is isosceles, then the _____

State the converse of this:

Do you think the converse is true?

Proof of the Base Angles Theorem

Proof of the Converse of Base Angles Theorem

Given: $\angle B \cong \angle C$ \overline{AD} bisects $\angle A$	
Prove: $\overline{AB} \cong \overline{AC}$	$a \xrightarrow{P} c$
Statements	Reasons

What would you conjecture is the relationship of the all the angles of an equilateral triangle?

Complete the following:

f a triangle is equilateral, then it	t is
--------------------------------------	------

State the converse of this:

Do you think the converse is true?

<u>Conjectures with the vertex angle</u> <u>bisector</u>

If a segment bisects the vertex angle, what relationship do you think it has with the base?

Proof of Vertex Angle Bisector Theorem (Part 1)

Given: $\overline{AB} \cong \overline{AC}$ \overline{AD} bisects $\angle A$		
Prove: $\overline{BD} \cong \overline{CD}$ & $\overline{BC} \perp \overline{AD}$		
Statements	Reasons	
$\overline{AB} \cong \overline{AC}$		
\overline{AD} bisects $\angle A$		
$\angle BAD \cong \angle CAD$		
$\overline{AD} \cong \overline{AD}$		
$\Delta BAD \cong \Delta CAD$		
$\overline{BD} \cong \overline{CD}$		
$\angle BDA \cong \angle CDA$		
$m \angle BDA \cong m \angle CDA$		
$m \angle BDA + m \angle CDA = 180$		
$m \angle BDA + m \angle BDA = 180$		
$2m\angle BDA = 180$		
$m \angle BDA = 90$		
$\overline{BC} \perp \overline{AD}$		

Vertex Angle Bisector Theorem

If a segment ______ the vertex angle of an ' isosceles triangle, then the segment is also the ______ (the

altitude and the median) of the base.