4.3 TRIANGLE CONGRUENCE **BY SSS AND SAS**

Suppose m and n are odd positive integers. Which of the following must also be an odd integer?

(A) m + 3n (B) 3m - n (C) 3mn (D) $(nm + 3)^2$ (E) $3m^2 + 3n^2$

In quadrilateral ABCD sides \overline{AB} and \overline{BC} both have length 10, sides \overline{CD} and \overline{DA} both have length 17, and the measure of angle ADC is 60° . What is the length of diagonal \overline{AC} ?

(A) 13.5 (B) 14 (C) 15.5 (D) 17 (E) 18.5

lf	sides in one triangle are congruent to
	sides in another triangle, then the
triangles	s are

If ______ sides and the ______ angle in one triangle are congruent to ______ sides and the ______ angle in another triangle, then the two triangles are ______ Write a proof.

Given $\overline{KL} \cong \overline{NL}, \ \overline{KM} \cong \overline{NM}$

Prove $\triangle KLM \cong \triangle NLM$

Statements	Reasons

Flow Chart Proofs

Use the information to complete the following flow chart proof.

Flow Chart Proofs

Use the information to complete the following flow chart proof.

