3.3 – Proving Lines Parallel

Which lines or segments are parallel? Justify your answer.

Determine the value of x for which $r \parallel s$. Then find the measure of each labeled angle.

Use the given information to determine which lines, if any, are parallel. Justify each conclusion with a theorem or postulate.

13) $\angle 11$ is supplementary to $\angle 10$. 14) $\angle 6 \cong \angle 9$

15) $\angle 13$ is supplementary to $\angle 14$. 16) $\angle 13 \cong \angle 15$

17) $\angle 12$ is supplementary to $\angle 3$. 18) $\angle 2 \cong \angle 13$

Use the diagram to answer the following.

19) Find the values of *x*, *y*, and *z* That makes $p \parallel q$ and $q \parallel r$. Explain your reasoning.

20) Is $p \parallel r$? Explain your reasoning.

21) Write a two-column proof.

Given: $\angle 1 \cong \angle 2$ and $\angle 2 \cong \angle 3$ Prove: $\angle 1 \cong \angle 4$

22) \overline{AB} is parallel to \overline{DE} , $m \angle w = 135^\circ$, and $m \angle z = 147^\circ$. Find $m \angle BCD$.

23) Point *R* is not in plane *ABC*.

- **a.** How many lines through *R* are perpendicular to plane *ABC*?
- **b.** How many lines through *R* are parallel to plane *ABC*?
- **c.** How many planes through *R* are parallel to plane *ABC*?

24) In the diagram to the right, $e \parallel d, g \parallel f$, and $a \parallel b \parallel c$. Find the following.

- a. $m \angle 1 = _$ b. $m \angle 2 = _$ c. $m \angle 3 = _$
- d. $m \angle 4 =$ _____
- e. $m \angle 5 =$ _____

