

PROPERTIES OF PERPENDICULAR LINES

- Understand the properties of perpendicular lines.
- Explore problems with parallel lines and a perpendicular transversal.
- Solve problems involving complementary adjacent angles.

Let's say you were given the following:

What can you say about the two angles? How do you know? In your own words, try to explain why this is so.

Two Column Proof

Given: $\angle 1 \cong \angle 2$

Prove: $a \perp b$

Statements	Reasons

If two lines ______ to form a linear pair of ______ angles, then the lines are _____.

Let's say you were given the following:

What can you say about lines b and c? How do you know? In your own words, try to explain why this is so.

Two Column Proof

Given: $a \parallel b, a \perp c$

Prove: $b \perp c$

5.

6.

Statements	Reasons
1.	
2. $m \angle 2 = 90^{\circ}$	
3. $\angle 6 \cong \angle 2$	
4.	

l

If $a \parallel b$ and $a \perp c$, then $b \perp c$.

In a plane, if a _____ is perpendicular to one of two parallel lines, then it is ______ to the other line. Let's say you were given the following:

What can you say about lines a and b? How do you know? In your own words, try to explain why this is so.

Two Column Proof

Given:
$$a \perp c$$
, $b \perp c$

Prove: $a \parallel b$

3.

4.

5.

Statements	Reasons
1.	
2. $m \angle 2 = 90^{\circ}$	
$m\angle 6 = 90^{\circ}$	

1

If $a \perp c$ and $b \perp c$, then $a \parallel b$

In a plane, if lines are ______ to the _____ line, then they are ______ to each other.