Mr.D

2.5 - Proofs About Angle Pairs and Segments (Part 2)

For Exercises 1–8, find each lettered angle measure without using a protractor.

For #7–12, tell whether each statement is always (A), sometimes (S), or never (N) true.

7) The sum of the measures of two acute angles equals the measure of an obtuse angle.

- 8) If $\angle XAY$ and $\angle PAQ$ are vertical angles, then either *X*, *A*, and *P* or *X*, *A*, and *Q* are collinear.
- 9) The sum of the measures of two obtuse angles equals the measure of an obtuse angle.
- 10) The difference between the measures of the supplement and the complement of an angle is 90°.

11) If two angles form a linear pair, then they are complementary.

12) If a statement is true, then its converse is true.

For # 13–16, fill in each blank to make a true statement.

13) If one angle of a linear pair is obtuse, then the other is ______.

- 14) If $\angle A \cong \angle B$ and the supplement of $\angle B$ has measure 22°, then $m \angle A =$ _____.
- 15) If $\angle P$ is a right angle and $\angle P$ and $\angle Q$ form a linear pair, then $m \angle Q$ is _____
- 16) If $\angle S$ and $\angle T$ are complementary and $\angle T$ and $\angle U$ are supplementary, then $\angle U$ is a(n)

___ angle.

Find the value of each variable and each angle. SHOW ALL ALGEBRAIC WORK!

19) Given: $\angle 1 \cong \angle 3$ Prove: $\angle 6 \cong \angle 4$	6 4 5 4
Statement	Reasons
1. $\angle 1 \cong \angle 3$	
2. $\angle 3 \cong \angle 6$	
3	Transitive Property
4. $\angle 1 \cong \angle 4$	
5. $\therefore \angle 6 \cong \angle 4$	

