| Name | Date             |      |
|------|------------------|------|
|      |                  | Mr.D |
|      | Chapter O Deview |      |

## **Chapter 2 Review**

1) Write the if-then form, converse, inverse, and the contrapositive of the statement "An angle whose measure is  $34^{\circ}$  is an acute angle." After each statement, write each one using symbols and variables *p* and *q*.

| If-then -        | <br> | <br> |
|------------------|------|------|
|                  |      |      |
| Converse -       |      |      |
|                  |      |      |
| Inverse -        |      |      |
|                  |      |      |
| Contrapositive - |      | <br> |
| 1                |      |      |

2) Is this a valid definition? Explain why or why not."If the sum of the measures of two angles is 90°, then the angles are complementary."

3) Write the definition of an equiangular polygon as a single biconditional statement.

| 4) | List the three steps of inductive reasoning: | For #6-8, <u>describe</u> the pattern and find the next two terms of the sequence. |
|----|----------------------------------------------|------------------------------------------------------------------------------------|
|    | a                                            | 6) 2, 5, 14, 41, 122,,                                                             |
|    | b                                            |                                                                                    |
|    | c                                            | 7) 7, 21, 35, 49, 63, 77,,                                                         |
| 5) | What is a conjecture that can be proven?     | 8) Z, 1, Y, 2, X, 4, W, 8,,                                                        |

Draw the next shape in each pattern.



11) Find a counterexample to disprove the conjecture: "If the quotient of two numbers is positive, then the two numbers must be positive."

In #12 -#14, determine the logical conclusion and state which law you used: Law of Detachment (LOD), Law of Contrapositive (LOC), or Law of Syllogism (LOS). If no conclusion can be drawn, write "no conclusion."

12) If an angle is a right angle, then the angle measures 90°,  $\angle B$  is a right angle.

13) If x = 3, then 2x = 6If 4x = 3, then x = 3

14) I will eat pancakes, if I get hungry. I am not hungry right now.

15) Complete the following truth table

| p | q |  | $\sim p \lor \sim q$ |
|---|---|--|----------------------|
|   |   |  |                      |
|   |   |  |                      |
|   |   |  |                      |
|   |   |  |                      |

For #16-19, justify each statement with a property from algebra or property of congruence.

- 16) If  $m \angle A + m \angle B + m \angle C = 180$  AND  $m \angle C = 50$ , then  $m \angle A + m \angle B + 50 = 180$ .
- 17) If  $m \angle A + m \angle B + 50 = 180$ , then  $m \angle A + m \angle B = 130$ .
- 18) If 6x = 18, then x = 3.
- 19) If  $\overline{AB} \cong \overline{CD}$  and  $\overline{CD} \cong \overline{EF}$ , then  $\overline{AB} \cong \overline{EF}$
- 20) Solve the equation. Write a reason for each step.



For #21 & 22, with the help of the diagram, name the definition, postulate, or theorem that justifies the statement.

21) If  $\overline{RS} \cong \overline{ST}$ , then S is the midpoint of  $\overline{RT}$ .



22) If  $\overrightarrow{SW}$  bisects  $\angle VST$ ,  $\angle VSW \cong \angle WST$ 



25) Find all the missing angles.



26) Find the measure of each angle in the diagram.



## Terms and Symbols to Know

- $\rightarrow$  if-then
- $\wedge$  and
- $\therefore$  therefore  $\sim$  not
- ~
- $\vee$
- Inductive Reasoning
- Conjecture
- Counterexample
- Conditional Statement
- Hypothesis
- Conclusion
- Converse
- Inverse
- Contrapositive
- Biconditional Statement
- Deductive Reasoning
- Law of Detachment

## **Bonus:**

Draw the following isometrically and orthographically:

| • |   | • |   | • |   | • |   | • |   |
|---|---|---|---|---|---|---|---|---|---|
|   | • |   | • |   | • |   | • |   | • |
| • |   | • |   | • |   | • |   | • |   |
|   | • |   | • |   | • |   | • |   | • |
| • |   | • |   | • |   | • |   | • |   |
|   | • |   | • |   | • |   | • |   | • |
| • |   | • |   | • |   | • |   | • |   |
|   | • |   | • |   | • |   | • |   | • |
| • |   | • |   | • |   | • |   | • |   |
|   | • |   | • |   | • |   | • |   | • |
| • |   | • |   | • |   | • |   | • |   |
|   | ٠ |   | • |   | • |   | • |   | • |
| • |   | • |   | • |   | • |   | • |   |
|   | • |   | • |   | • |   | • |   | • |
| • |   | • |   | • |   | • |   | • |   |
|   | • |   | • |   | • |   | • |   | • |

- Law of Contrapositive
- Law of Syllogism
- Congruent Complements Theorem
- Congruent Supplements Theorem
- Linear Pair Postulate
- Vertical Angles Theorem
- Reflexive Property of Equality
- Symmetric Property of Equality
- Transitive Property of Equality
- Substitution Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
- Multiplication Property of Equality
- Division Property of Equality
- Distributive Property
- Reflexive Property of Congruence
- Symmetric Property of Congruence
- Transitive Property of Congruence

