

Name

Properties of Algebra

Directions: Use A–K to name the property demonstrated by the exercises.

- A. Associative Property **9.** BD = BD**B.** Commutative Property **C.** Distributive Property **D.** Reflexive Property E. Symmetric Property **F.** Transitive Property G. Substitution Property H. Addition Property of Equality I. Subtraction Property of Equality J. Multiplication Property of Equality AB + 15 = AC**K.** Division Property of Equality 1. $6x^2 + x = x(6x + 1)$ **12.** $m \angle ABC = m \angle ABC$ **2.** $(m \angle 1 + m \angle 2) + m \angle 3 =$ $m \angle 1 + (m \angle 2 + m \angle 3)$ AB = PQ - BC____ **3.** $(m \angle 1 + m \angle 2) + m \angle 3 =$ $(m \angle 2 + m \angle 1) + m \angle 3$ 4. If AB + BC = AC, then BC + AB = AC**5.** 2(AB)(MN) = (AB)(2)(MN) $2m\angle P = m\angle Q$ 6. If $m \angle A = m \angle B$ and $m \angle B = 35^{\circ}$, then m $\angle A = 35^{\circ}$ 7. If AB + BC = AC, then AC = AB + BC8. If $m \angle P - m \angle T = 75^{\circ}$ and $m \angle P = 115^{\circ}$, then $115^\circ - m \angle T = 75^\circ$ Geometry to Go
 - 10. If PQ + QR = MN and MN = ST + UV, then PQ + QR = ST + UV
 - 11. If AB + BC = AC and BC = 15 cm, then

Date

13. AB + BC = PQ, therefore

- 14. m $\angle A$ = m $\angle B$, therefore $m \angle A + 90^\circ = m \angle B + 90^\circ$
- **15.** 2(PQ) = 16 m, therefore PQ = 8 m
- **16.** $m \angle P = \frac{1}{2}m \angle Q$, therefore
- 17. If $m \angle 1 + m \angle 2 + m \angle 3 + m \angle 4 = 360^{\circ}$, and $m \angle 2 + m \angle 3 = 180^\circ$, then $m \angle 1 + m \angle 4 = 180^{\circ}$
- **18.** If $m \angle P 86^\circ = 150^\circ$, then $m \angle P = 236^\circ$.

Inductive Reasoning

- 1) Observe
- 2) Find a pattern
- 3) Make a conjecture

Deductive Reasoning

When you make a conclusion from things that you previously know and accept as true.

Have we done inductive reasoning already? -Observe -Observe -Sind a Pattern -Make a Conjecture

4. Define *midpoint of a segment*.

Point *C* is a midpoint of segment *AB*.Point *T* is a midpoint of segment *MN*.Point *E* is a midpoint of segment *QD*.

Points *B* and *C* are not midpoints of segment *AD*.

Point *P* is not a midpoint of segment *OY*. Point *L* is not a midpoint of segment *KM*.

Now What?

This is then deductive reasoning

80 cm

Have we done inductive reasoning already? -Observe -Observe -Sind a Pattern -Make a Conjecture

Now What?

Types of Knowledge (Conclusions)

Conjectures

Postulates

Conjectures

✓ <u>Theorems</u>

Conjectures

Geometry Pool of Knowledge

Def. of Congruency	If objects are congruent, then the objects are equal in measure.
Def. of a Midpoint	If a point is a midpoint, then it divides a
	segment into two congruent parts.
Def. of an Angle Bisector	If a ray is an angle bisector, then it divides and angle into two congruent smaller angles
Def. of a Right Angle	If an angle is a right angle, then it has a measure of 90 degrees.
Def. of Complementary Angles	If two angles are complementary, then their sum is 90 degrees
Def. of Supplementary Angles	If two angles are supplementary, then their sum is 180 degrees.
Def. of Linear Pair	If two angles lie on a line and are adjacent, then they are a linear pair.
Segment Addition Postulate	If C lies on \overline{AB} , then $AC + CB = AB$.
Angle Addition Postulate	If D lies within $\angle ABC$, then $m \angle ABD + m \angle DBC = m \angle ABC$.
Commutative Property	
Associative Property	
Distributive Property	
Substitution Property	
Reflexive Property	
Symmetric Property	
Addition Property of Equality	
Subtraction Property of Equality	
Multiplication Property of Equality	
Division Property of Equality	

Use the properties to copy and complete the statements

Name the property illustrated by the statement

- 4) If $\overline{DG} \cong \overline{CT}$, then $\overline{CT} \cong \overline{DG}$
- 5) $\angle VWX \cong \angle VWX$
- 6) If $\overline{JK} \cong \overline{MN}$ and $\overline{MN} \cong \overline{XY}$, then $\overline{JK} \cong \overline{XY}$

Complete each proof by supplying the missing reasons and statements.

Given: AC = AB + AB

Prove: AB = BC

Statement	Reasons
1. $AC = AB + AB$	
2. AB + BC = AC	
3. $AB + AB = AB + BC$	
4. $\therefore AB = BC$	

Given: $m \angle 1 = m \angle 3$	E D
Prove : $m \angle EBA = m \angle CBD$	C 1 2 3 A
Statement	Reasons V_B
1. $m \angle 1 = m \angle 3$	
2. $m \angle EBA = m \angle 2 + m \angle 3$	
3. $m \angle EBA = m \angle 2 + m \angle 1$	
4. $m \angle EBA = m \angle 1 + m \angle 2$	
5. $m \angle 1 + m \angle 2 = m \angle CBD$	
6. $\therefore m \angle EBA = m \angle CBD$	

Given: T is the midpoint of \overline{SU}

Prove: x = 5

Statement	Reasons
1. T is the midpoint of \overline{SU}	
2. $\overline{ST} \cong \overline{TU}$	
3. $ST = TU$	
4. 7x = 3x + 20	
5	
6. ∴	

Prove: x = 50

Given: $m \angle AOC = m \angle BOD$ Prove: $m \angle 1 = m \angle 3$	A B C D
Statement	O Reasons
1. $m \angle AOC = m \angle BOD$	
2. $m \angle AOC = m \angle 1 + m \angle 2$; $m \angle BOD = m \angle 2 + m \angle 3$	
3. $m \angle 1 + m \angle 2 = m \angle 2 + m \angle 3$	
4. $m \angle 2 = m \angle 2$	
5. $\therefore m \angle 1 = m \angle 3$	