pp. 363-364 (#3-14, 16-30, and 32)

- 3. inverse variation
- 4. inverse variation
- direct variation
- 6. direct variation
- 7. neither
- 8. neither
- 9. direct variation
- **10.** inverse variation
- 11. direct variation
- 12. direct variation
- 13. inverse variation
- 14. neither

16.
$$y = \frac{9}{x}; y = 3$$

- **17.** $y = -\frac{24}{x}; y = -8$
- **18.** $y = \frac{14}{x}; y = \frac{14}{3}$
- **19.** $y = \frac{21}{x}; y = 7$
- **20.** $y = \frac{5}{x}; y = \frac{5}{3}$
- **21.** $y = \frac{2}{x}; y = \frac{2}{3}$
- **22.** $y = -\frac{35}{3x}; y = -\frac{35}{9}$
- 23. The equation for direct variation was used; Because $5 = \frac{a}{8}$,

$$a = 40$$
. So, $y = \frac{40}{x}$.

24. The value of a was substituted into the direct variation

equation;
$$y = \frac{10}{x}$$

25. a.	Size	2	2.5	3	5
	Number of songs	5000	4000	3333	2000

b. The number of songs decreases.

26.
$$P = \frac{154.8}{A}$$
; 2.58 lb/in.²
27. $A = \frac{26,000}{C}$; about 321 chips per wafer

- **28.** direct variation; The points lie on a line.
- **29.** yes; The product of the number of hats and the price per hat is \$50, which is constant.
- **30.** about 190.4 lb

32. x varies directly with z;
$$xy = a$$
, so $y = \frac{a}{x}$; $yz = b$, so $y = \frac{b}{z}$;

$$\frac{a}{x} = \frac{b}{z}, az = bx, x = \frac{a}{b}z$$

pp. 370-371 (#2-32 evens)

2. no; The denominator is not a polynomial.

The graph of g lies farther from the axes. Both graphs lie in the first and third quadrants and have the same asymptotes, domain, and range.

6.

The graph of g lies farther from the axes and is reflected over the x-axis. Both graphs have the same asymptotes, domain, and range.

The graph of g lies farther from the axes and is reflected over the *x*-axis. Both graphs have the same asymptotes, domain, and range.

10.

The graph of g lies closer to the axes. Both graphs lie in the first and third quadrants and have the same asymptotes, domain, and range.

8.

domain: all real numbers except 0; range: all real numbers except -3

domain: all real numbers except -2; range: all real numbers except 0

domain: all real numbers except 7; range: all real numbers except 0

domain: all real numbers except -7; range: all real numbers except -5

20. The vertical asymptote should be x = 1;

domain: all real numbers except -5; range: all real numbers except 1

domain: all real numbers except 3; range: all real numbers except 4

domain: all real numbers except $\frac{1}{3}$; range: all real numbers except 2

domain: all real numbers except 10; range: all real numbers except 2

translation 3 units right and 7 units up

translation 2 units right and 4 units up

translation 8 units right and 1 unit up

40.
$$g(x) = \frac{-66}{x+7} + 9$$

translation 7 units left and 9 units up

- **42. a.** 10 months
 - **b.** The average cost approaches \$59.
- 43. B
- **44.** B
- **45. a.** about 23°C
 - **b.** −0.005 sec/°C

Sample answer: domain: 0 < x < 1; range: 0 < y < 150

b. about \$3333; about \$8571; \$40,000; no; Doubling the percentage does not double the cost because this is not a linear function.

48. 10^{-10}

-6

54.

51. yes; A rational function can have more than one vertical asymptote when the denominator is zero for more than

one value of x, such as $y = \frac{3}{(x+1)(x-1)}$.

- **52.** x = -3, y = 2; As x approaches -3, y approaches $\pm \infty$. As x approaches $\pm \infty$, y approaches 2.
- **53.** y = x, y = -x; The function and its inverse are the same.

55. (4, 3); The point (2, 1) is one unit left and one unit down from (3, 2), so a point on the other branch is one unit right and one unit up from (3, 2).

- 56. a. decreasing: $(-\infty, 0)$, $(0, \infty)$; The graph falls from left to right.
 - **b.** increasing: $(-\infty, 0)$, $(0, \infty)$; The graph rises from left to right.
- **57.** The competitor is a better choice for less than 18 months of service; The cost of Internet service is modeled by

 $C = \frac{50 + 43x}{x}$. The competitor's cost is lesser when x = 6 and x = 12, and greater when x = 18 and x = 24.

58. a.
$$f_{\ell} = \frac{740(2000)}{740 - r}, f_{\ell} = \frac{740(2000)}{740 + r}$$

c. The frequency heard is greater for an approaching sound source.

pp. 380-381 (#4-26 evens)

4.
$$\frac{7x-1}{2x}$$

6. simplified form
8. $\frac{x-4}{x^2+3x+9}, x \neq 3$
10. $\frac{x-1}{3(3x^2-7)}$
12. $\frac{8x^4}{y^2}, x \neq 0$
14. $\frac{(x+5)(x+8)}{3}, x \neq 0, x \neq 9$
16. $\frac{(x-4)(x+4)}{2}, x \neq 0, x \neq 1$
18. $\frac{(x-3)(x+1)}{2x^2(x+3)}, x \neq -2$
20. $(x+3)(x-2), x \neq -4, x \neq 4$
22. The expression $3 - x$ should be factor

- 22. The expression 3 x should be factored into -(x 3) before dividing out the common factor; -(x 5) or 5 x, $x \neq 3, x \neq -5$
- 24. $\frac{y^5}{x^3}$; Sample answer: Multiplying the numerators and

denominators before simplifying was faster because you only have to simplify the expression once.

26.
$$\frac{(x+2)(x-2)}{2(x+4)}$$
; $x \neq 2, x \neq 5$

pp. 381-382 (#28-36 evens, 37-47 all)

28.
$$\frac{2}{3y^3}, x \neq 0, z \neq 0$$

30. $3, x \neq 0, x \neq 1, x \neq 6$
32. $\frac{(x+4)}{(x+2)(x-9)}$
34. $\frac{(x-8)(x+2)}{(x-2)(x+8)}, x \neq -10, x \neq -5, x \neq -2$

36. a. original tin: $\frac{2s+4h}{hs}$, new tin: $\frac{s+4h}{hs}$

b. yes; The efficiency ratio of the new tin is smaller than the original tin.

37.
$$M = \frac{171,000t + 1,361,000}{(1 + 0.018t)(2.96t + 278.649)};$$
 \$8443

38.
$$M = \frac{17,913t + 709,569}{(1 - 0.028t)(0.5906t + 70.219)};$$
 \$14,665

39. a. The population is increasing by 2,960,000 people each year.

b. The population was 278,649,000 people in 2000.

40. h(x): $x \neq 1$, k(x): $x \neq -4$, $x \neq 1$; The value x = 1 is not in the domain of *f*. Because y = 0 when x = -4 in the graph

of g, x = -4 is not in the domain of $\frac{1}{g}$.

x	У	
-3.5	-0.1333	
-3.8	-0.1282	
-3.9	-0.1266	
-4.1	-0.1235	
-4.2	-0.1220	

The graph does not have a value for y when x = -4 and approaches y = -0.125.

- 42. You are correct; The values -9 and 5 make the denominator equal to zero in the original expression, so both values are not in the domain.
- **43.** $\frac{4}{7x}$
- **44.** x 5

45.
$$9(x + 3), x \neq -\frac{3}{2}, x \neq \frac{5}{2}, x \neq 7$$

- **46.** $x 6, x \neq -2, x \neq 2, x \neq 6$
 - **47.** Galapagos: about 0.371, King: about 0.203; King; The King penguin has a smaller surface area to volume ratio, so it is better equipped to live in a colder environment.

41.

p. 388 (#2-26 evens, 27-30 all)

2. Both expressions require a common denominator before adding or subtracting the numerators.

4.
$$\frac{x-4}{16x^2}$$

6. $\frac{3x(x+2)}{x-8}$
8. $2x + 1, x \neq \frac{1}{2}$
10. $4x^2(x+3)$
12. $24x^2(x-2)$
14. $(3x + 4)(3x - 4)(x - 1)$
16. $(x - 9)(x + 7)$
18. The LCM is $(x + 2)(x - 5)$, so multiply x by $x - 5$ and 4 by $x + 2; \frac{x^2 - x + 8}{(x + 2)(x - 5)}$
20. $\frac{15x + 32}{12x^2}$
22. $\frac{2x^2 + 3x + 9}{(x - 3)(x + 1)}$
24. $\frac{-x + 1}{(x + 7)(x - 2)}$
26. $\frac{-x^3 - 3x^2 - x - 51}{(x + 5)(x - 5)(x + 3)}$
27. sometimes: When the denominators have no common factors

- 27. sometimes; When the denominators have no common factors, the product of the denominators is the LCD. When the denominators have common factors, use the LCM to find the LCD.
- **28.** always; The LCD is the product of the highest power of each factor that appears in any of the denominators.
- **29.** A
- **30.** B

The graph of g is a translation 5 units left and 6 units up of the graph of $f(x) = \frac{-26}{x}$.

The graph of g is a translation 13 units left and 8 units

up of the graph of $f(x) = \frac{-104}{x}$.

36.
$$g(x) = \frac{-6}{x} + 4$$

The graph of g is a translation 4 units up of the graph of $f(x) = \frac{-6}{x}$.

The graph of g is a translation 10 units left and 7 units up of the graph of $f(x) = \frac{-79}{r}$.

40. $\frac{5(15x-2)}{x(x+20)}$ 42. $\frac{8x(x+1)}{(5x+3)(x-2)}, x \neq -1, x \neq 0$ 44. $\frac{3x}{4(x-1)}, x \neq -2, x \neq 2$ 45. $T = \frac{2ad}{(a+j)(a-j)}; \text{ about } 10.2 \text{ h}$ 46. $R_t = \frac{R_1R_2}{R_2 + R_1}, R_1 \neq 0, R_2 \neq 0; \text{ about } 1474 \text{ ohms}$ 47. $y = \frac{20(7x+60)}{x(x+30)}$ 48. a. $t = \frac{119.5r+147.5}{15r(r+5)}$

b. 1 h 50 min; When r = 2, the value of $t \approx 1.84$.

49. no; The LCM of 2 and 4 is 4, which is greater than one number and equal to the other number.

50. h = -1, k = -4

51. a.
$$M = \frac{Pi}{1 - \left(\frac{1}{1+i}\right)^{12t}}$$
$$= \frac{Pi}{1 - \frac{1}{(1+i)^{12t}}} \cdot \frac{(1+i)^{12t}}{(1+i)^{12t}}$$
$$= \frac{Pi(1+i)^{12t}}{(1+i)^{12t} - 1}$$
b. \$364.02

52. yes; Sample answer:
$$\frac{x^2 - 1}{x} + \frac{1}{x} = x^2, x \neq 0$$

55. a.
$$R_1 = \frac{1}{40}, R_2 = \frac{1}{x}, R_3 = \frac{1}{x+10}$$

b.
$$R = \frac{x^2 + 90x + 400}{40x(x + 10)}$$

c. about 0.0758 car/min; about 4.5 cars/h; Multiply the number of cars washed per minute by the rate 60 min/h to obtain an answer in cars per hour.

57.
$$1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}}}}, 1 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2}}}};$$

1.4, about 1.4167, about 1.4138, about 1.4143, about 1.4142; $\sqrt{2}$

pp. 396-397 (#2-32 evens)

- 2. yes; When x = 3 is substituted into the original equation, the denominators are zero.
- 4. x = 66. x = 28. x = 2, x = 510. $x = -\frac{3}{2}, x = 5$ 12. 15 hits 14. about 0.07 L 16. x(x - 1)18. 3(x + 9)(2x - 1)20. x = 422. x = 124. $x = -\frac{5}{2}, x = 8$ 26. no solution 28. x = 0, x = 730. $x = \frac{-1 \pm \sqrt{79}}{3}$
- 32. Each term of the equation should be multiplied by the LCD;

$$(2x+5)(3x) \cdot \frac{(7x+1)}{2x+5} + (2x+5)(3x) \cdot 4$$
$$= \frac{10x-3}{3x}(2x+5)(3x)$$

pp. 397-398 (#33-36, 38-44 evens, 45-57)

33. a.

	Work rate	Time	Work done
You	$\frac{1 \text{ room}}{8 \text{ hours}}$	5 hours	$\frac{5}{8}$ room
Friend	$\frac{1 \text{ room}}{t \text{ hours}}$	5 hours	$\frac{5}{t}$ room

b. The sum is the amount of time it would take for you and your friend to paint the room together; $\frac{5}{8} + \frac{5}{t} = 1$,

 $t = 13.\overline{3}$ h = 13 h 20 min

34. a.

	Work rate	Time	Work done	
You	$\frac{1 \text{ park}}{2 \text{ hours}}$	1.2 hours	0.6 park	
Friend	Friend $\frac{1 \text{ park}}{t \text{ hours}}$		$\frac{1.2}{t}$ park	

b. The sum is the amount of time it would take for you and your friend to clean the park together; $0.6 + \frac{1.2}{t} = 1$,

t = 3 h

35. Sample answer: $\frac{x+1}{x+2} = \frac{3}{x+4}$, Cross multiplication can be

used when each side of the equation is a single rational

expression; Sample answer: $\frac{x+1}{x+2} + \frac{3}{x+4} = \frac{1}{x+3}$;

Multiplying by the LCD can be used when there is more than one rational expression on one side of the equation.

- **36.** *Sample answer:* A rational equation can be used to determine how long it would take you and your friend working together to clean a park.
- **38.** yes; $y = \frac{7}{r} 6$ **40.** yes; $y = \frac{5}{x+6}$ 42. yes; $y = \frac{8}{5r} - \frac{9}{5}$ **44.** no; $y = \pm \sqrt[4]{\frac{1}{x+7}}$ **45. a.** about 21 mi/gal **b.** about 21 mi/gal **46. a.** about 190.6 ft **b.** about 190.6 ft **47.** $x \approx \pm 0.8165$ **48.** $x \approx \pm 0.7746$ **49.** $x \approx 1.3247$ **50.** $x \approx 1.2599$ **51.** $\frac{1+\sqrt{5}}{2}$ **52.** x = -3; The graphs intersect at x = -3. **53.** $g(x) = \frac{4x+1}{x-2}$ 54. $g(x) = \frac{-3x - 7}{2x - 4}$ **55.** $y = \frac{b - xd}{x_0 - a}$ **56. a.** yes; Sample answer: $\frac{1}{r} = \frac{1}{r+1}$ yes; Sample answer: See Example 2. b. **c.** yes; *Sample answer:* See Example 3(b). **d.** yes; Sample answer: $\frac{1}{r+1} = \frac{3}{3r+3}$

- **57. a.** always true; When x = a, the denominators of the fractions are both zero.
 - **b.** sometimes true; The equation will have exactly one solution except when a = 3.
 - c. always true; x = a is an extraneous solution, so the equation has no solution.

pp. 400-402 (#2-30 evens and #31)

- 2. direct variation
- 3. direct variation
- 4. neither
- 5. direct variation
- 6. inverse variation

7.
$$y = \frac{5}{x}; y = -\frac{5}{3}$$

8. $y = \frac{24}{x}; y = -8$

9.
$$y = \frac{45}{x}; y = -15$$

10.
$$y = \frac{-8}{x}; y = \frac{8}{3}$$

domain: all real numbers except 3; range: all real numbers except 0

domain: all real numbers except -5; range: all real numbers except 2

domain: all real numbers except 4; range: all real numbers except 3

14.
$$\frac{16x^3}{y^2}, x \neq 0$$

15.
$$\frac{3(x+4)}{x+3}, x \neq 3, x \neq 4$$

16. $\frac{3x(4x-1)}{(x-4)(x-3)}, x \neq 0, x \neq \frac{1}{4}$
17. $\frac{1}{(x+3)^2}, x \neq 5, x \neq 8$
18. $\frac{3x^2+26x+36}{6x(x+3)}$
19. $\frac{5x^2-11x-9}{(x+8)(x-3)}$
20. $\frac{-2(2x^2+3x+3)}{(x-3)(x+3)(x+1)}$
21. $g(x) = \frac{16}{x-3} + 5$

translation 3 units right and 5 units up of the graph of f

$$22. \quad g(x) = \frac{-26}{x+7} + 4$$

translation 7 units left and 4 units up of the graph of f

23.
$$g(x) = \frac{-1}{x-1} + 9$$

translation 1 unit right and 9 units up of the graph of f

24.
$$\frac{pq}{p+q}, p \neq 0, q \neq 0$$

25. $x = 5$
26. $x = 0$

27. no solution

28. yes;
$$g(x) = \frac{3}{x} - 6$$

29. yes; $g(x) = \frac{10}{x} + 7$
30. yes; $g(x) = \frac{1}{x-8}$
31. a. 4 games
b. 4 games