pp. 542-544 (#2-28 evens)

- 2. Theoretical probability is based on the number of outcomes and experimental probability is based on repeated trials.
- 4. 6; HP, HP, HW, TP, TP, TW
- 8. $\frac{1}{16}$, or 6.25%
- 10. a. 80%
 - **b.** 26%
- 12. The event should be that the number is less than or equal to $4; \frac{13}{15}$
- **14. a.** about 0.23, or about 23%
 - **b.** about 0.03, or about 3%
 - **c.** about 0.47, or about 47%
 - **d.** about 0.24, or about 24%
- 16. black
- **18.** *Sample answer:* drawing an orange marble from a bag containing blue and green marbles; drawing a red marble from a bag containing red marbles
- **20.** about 0.22, or about 22%
- 22. B, A, C, D
- 24. no; Your friend calculated the experimental probability. The theoretical probability of the coin landing heads up is $\frac{1}{2}$.
- **26.** $\frac{2}{3}$; f(x) + c intersects the x-axis when c is 1, 2, 3, or 4.

28. Sample answer: Box A contains three cards numbered 1, 2, and 3. Box B contains 2 cards numbered 1 and 2. One card is removed at random from each box. Find the probability that the product of the two numbers is at least 5; $\frac{1}{6}$

pp. 550-551 (#3-20)

- **3.** dependent; The occurrence of event A affects the occurrence of event B.
- 4. independent; The occurrence of event A does not affect the occurrence of event B.
- **5.** dependent; The occurrence of event A affects the occurrence of event B.
- 6. independent; The occurrence of event A does not affect the occurrence of event B.
- **7.** yes
- 8. no
- **9.** yes
- 10. no
- 11. about 2.8%
- **12.** 2.4%
- 13. about 34.7%
- 14. about 23.8%
- **15.** The probabilities were added instead of multiplied; P(A and B) = (0.6)(0.2) = 0.12
- **16.** $P(B \mid A)$ is incorrect; $P(B \mid A) = \frac{4}{6}$; $P(A \text{ and } B) = \frac{2}{7} \approx 0.286$
- **17.** 0.325
- **18.** 0.25
- **19. a.** about 1.2%
 - **b.** about 1.0%

You are about 1.2 times more likely to select 3 face cards when you replace each card before you select the next card.

- **20. a.** about 9.1%
 - **b.** about 7.4%

You are about 1.23 times more likely to select 3 red marbles when you replace each marble before you select the next marble.

pp. 551-552 (#21-30)

- **21. a.** about 17.1%
 - **b.** about 81.4%
- **22. a.** about 46.2%
 - **b.** about 58.1%
- 23. about 53.5%
- 24. about 6.0%
- **25. a.** *Sample answer:* Put 20 pieces of paper with each of the 20 students' names in a hat and pick one; 5%
 - **b.** *Sample answer:* Put 45 pieces of paper in a hat with each student's name appearing once for each hour the student worked. Pick one piece; about 8.9%
- 26. a. without
 - **b.** with
- 27. yes; The chance that it will be rescheduled is (0.7)(0.75) = 0.525, which is a greater than a 50% chance.
- **28.** Event A represents rolling at least one 2. Event B represents the dice summing to 5; dependent; $P(A \text{ and } B) = \frac{2}{36}$ and $P(A)P(B) = \frac{11}{324}$
- **29. a.** wins: 0%; loses: 1.99%; ties: 98.01%
 - **b.** wins: 20.25%; loses: 30.25%; ties: 49.5%
 - c. yes; Go for 2 points after the first touchdown, and then go for 1 point if they were successful the first time or 2 points if they were unsuccessful the first time; winning: 44.55%; losing: 30.25%
- **30. a.** The occurrence of one event does not affect the occurrence of the other, so the probability of each event is the same whether or not the other event has occurred.
 - **b.** yes; $P(A \text{ and } B) = P(A) \bullet P(B)$ and $P(A) = P(A \mid B)$.

pp. 558-559 (#3-16)

3. 34; 40; 4; 6; 12

5.

4. 42; 98; 3; 59; 108

		Ger		
		Male	Total	
onse	Yes	132	151	283
Response	No	39	29	68
	Total	171	180	351

351 people were surveyed, 171 males were surveyed, 180 females were surveyed, 283 people said yes, 68 people said no.

6.	6.		Role		
			Teachers	Parents	Total
	onse	Yes	49	18	67
	Response	No	11	30	41
		Total	60	48	108

108 people were surveyed, 60 teachers were surveyed, 48 parents were surveyed, 67 people said yes, 41 people said no.

		Domina		
		Left	Total	
der	Female	0.048	0.450	0.498
Gender	Male	0.104 0.398		0.502
	Total	0.152 0.848		1

7.

		Gender		
	Male Female		Female	Total
nce	Expert	0.151	0.015	0.166
Experience	Average	0.670	0.059	0.729
Exp	Novice	0.098	0.007	0.105
	Total	0.919	0.081	1

9.

		(
		Male	Female	Total
onse	Yes	0.376	0.430	0.806
Response	No	0.111	0.083	0.194
	Total	0.487	0.513	1

10.			Vac		
			Received	Not Received	Total
	lth	Flu	0.1429	0.1518	0.2947
	Health	No Flu	0.2946	0.4107	0.7053
		Total	0.4375	0.5625	1

		Breakfast	
		Ate	Did Not Eat
Feeling	Tired	0.091	0.333
Fee	Not Tired	0.909	0.667

-	
	<i>_</i>

		Vaccination		
		Received Not Received		
lth	Flu	0.327	0.270	
Health	No Flu	0.673	0.730	

13. a. about 0.789

- **b.** 0.168
- c. The events are independent.
- 14. a. about 0.10
 - **b.** about 0.227
 - c. The events are not independent.

15. The value for P(yes) was used in the denominator instead of the value for P(Tokyo);

 $\frac{0.049}{0.39}\approx 0.126$

16. The denominator should have been P(no); $\frac{0.112}{0.644} \approx 0.174$

pp. 559-560 (#17-26)

- **17.** Route B; It has the best probability of getting to school on time.
- **18.** Group 1; It has the greatest probability of exceeding expectations.
- 19. Sample answer:

		Transporta			
		Rides Bus	Walks	Car	Total
der	Male	6	9	4	19
Gender	Female	5	2	4	11
	Total	11	11	8	30

		Transporta	Transportation to School				
		Rides Bus	Walks	Car	Total		
der	Male	0.2	0.3	0.133	0.633		
Gender	Female	0.167	0.067	0.133	0.367		
	Total	0.367	0.367	0.266	1		

- 20. a. the parents surveyed that said no
 - **b.** the total people that said yes
 - c. the total people surveyed
- **21.** Routine B is the best option, but your friend's reasoning of why is incorrect; Routine B is the best choice because there is a 66.7% chance of reaching the goal, which is higher than the chances of Routine A (62.5%) and Routine C (63.6%).

		Preference		
		Math Science		Total
der	Male	93	57	150
Gender	Female	148 52		200
	Total	241 109		350

23. a. about 0.438

22.

b. about 0.387

- 24. Sample answer: Venn diagrams show a visual representation of the data, and two-way tables organize the information into rows and columns; An advantage of a Venn diagram is that people who learn visually will easily understand them. A disadvantage is that as more categories are used, the Venn diagram becomes harder to draw and interpret. An advantage of a two-way table is that it is very easy to read and interpret, even with many categories. A disadvantage is that they are not as visual as Venn diagrams.
- **25. a.** More of the current consumers prefer the leader, so they should improve the new snack before marketing it.
 - **b.** More of the new consumers prefer the new snack than the leading snack, so there is no need to improve the snack.

		Own		
		Yes	No	Total
der	Male	5	3	8
Gender	Female	7	5	12
	Total	12	8	20

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$
$$P(\text{Male} \mid \text{yes}) = \frac{P(\text{yes} \mid \text{Male}) \cdot P(\text{Male})}{P(\text{yes})}$$
$$= \frac{\frac{5}{8} \cdot \frac{8}{20}}{\frac{12}{20}}$$
$$= \frac{5}{12}$$

pp. 567-568 (#3-16)

- **3.** 0.4
- **4.** 0.75
- 5. $\frac{7}{12}$, or about 0.58
- 6. $\frac{13}{15}$, or about 0.87
- 7. $\frac{9}{20}$, or 0.45
- **8.** 70%
- 9. $\frac{7}{10}$, or 0.7
- 10. $\frac{56}{81}$, or about 0.69
- 11. forgot to subtract *P*(heart and face card); *P*(heart) + *P*(face card) - *P*(heart and face card) = $\frac{11}{26}$
- 12. added instead of subtracted *P*(club and 9); $P(\text{club}) + P(9) - P(\text{club and } 9) = \frac{4}{13}$
- 13. $\frac{2}{3}$
- 14. $\frac{5}{6}$
- **15.** 10%
- **16.** $\frac{1}{6}$

p. 568 (#17-26)

- **17.** 0.4742, or 47.42%
- 18. a. 0.09
 - **b.** 0.12
 - c. The coach should leave the goalie in the game.
- **19.** $\frac{13}{18}$
- 20. no; The intersection of A and B is not empty.
- **21.** $\frac{3}{20}$

- **23.** no; Until all cards, numbers, and colors are known, the conclusion cannot be made.
- **24.** $a_1 = 4, a_2 = 11, a_3 = 25, a_4 = 53, a_5 = 109, a_6 = 221$
- **25.** $a_1 = 1, a_2 = 2, a_3 = 3, a_4 = 4, a_5 = 5, a_6 = 6$
- **26.** $a_1 = 2, a_2 = 6, a_3 = 12, a_4 = 10, a_5 = 5, a_6 = 3.5$

pp. 575-576 (#2-18 evens, #19, #20-36 evens,

#37-44)

2. $\frac{7!}{(7-2)!}$; It is the only expression that does not equal 21.

- **3. a.** 2
 - **b.** 2
- **4. a.** 6
 - **b.** 6
- **5. a.** 24
 - **b.** 12
- **6. a.** 120
 - **b.** 20
- **7. a.** 720
 - **b.** 30
- **8. a.** 5040
 - **b.** 42
- **9.** 20
- **10.** 210
- **11.** 9
- **12.** 720
- **13.** 20,160
- **14.** 1
- **15.** 870
- **16.** 6,375,600
- **17.** 990
- **18.** 720
- **19.** $\frac{1}{56}$

- **20.** $\frac{1}{720}$
- **22.** 6
- **24.** 5
- **26.** 56

- **30.** 330
- **32.** 15,504

28

- **34.** 21
- 36. The permutations formula was used;

$$_9C_4 = \frac{9!}{(9-4)!4!} = 126$$

- **37.** combinations; The order is not important; 45
- 38. permutations; The order is important; 720
- **39.** permutations; The order is important; 132,600
- **40.** combinations; The order is not important; 80,730
- **41.** $_{50}C_9 = {}_{50}C_{41}$; For each combination of 9 objects, there is a corresponding combination of the 41 remaining objects.

42. a.
$${}_{n}C_{n} = \frac{n!}{n!0!} = 1$$

b. ${}_{n}C_{n-r} = \frac{n!}{(n-(n-r))!(n-r)!} = \frac{n!}{(r)!(n-r)!} = {}_{n}C_{r}$
c. ${}_{n}C_{r} + {}_{n}C_{r-1} = \frac{n!}{(n-r)!r!} + \frac{n!}{(n-r+1)!(r-1)!}$
 $= \frac{n!(n-r+1) + n!r}{(n-r+1)!r!}$
 $= \frac{n!n+n!}{(n-r+1)!r!}$
 $= \frac{n!(n+1)!}{(n-r+1)!r!}$
 $= \frac{(n+1)!}{(n+1-r)!r!}$

43. a. neither, they are the same; ${}_{4}P_{4} = {}_{4}P_{3} = 24$ **b.** 3; ${}_{4}C_{4} = 1$, ${}_{4}C_{3} = 4$ **c.** ${}_{n}P_{n} = {}_{n}P_{n-1}$, but ${}_{n}C_{n} < {}_{n}C_{n-1}$ when n > 1, and ${}_{n}C_{n} = {}_{n}C_{n-1}$ when n = 1.

44. *Sample answer:* Two candidates are chosen from a group of 5 to be the president and vice president; Two candidates are chosen from a group of 5 to be on a committee.

pp. 576-577 (#45-48, #50-70 evens, #71-78)

45.

	<i>r</i> = 0	<i>r</i> = 1	<i>r</i> = 2	<i>r</i> = 3
_з Р,	1	3	6	6
з С,	1	3	3	1

- $_{n}P_{r} \ge _{n}C_{r}$; Because $_{n}P_{r} = \frac{n!}{(n-r)!}$ and $_{n}C_{r} = \frac{n!}{(n-r)! \cdot r!}$,
- $_{n}P_{r} > _{n}C_{r}$ when r > 1 and $_{n}P_{r} = _{n}C_{r}$ when r = 0 or r = 1.
- **46.** $r! = \frac{{}_{n}P_{r}}{{}_{n}C_{r}}; 24$
- **47.** $\frac{1}{44,850}$
- **48.** $\frac{1}{21}$
- **50.** $\frac{1}{5040}$
- **52.** $c^5 20c^4 + 160c^3 640c^2 + 1280c 1024$
- **54.** $4096p^6 6144p^5q + 3840p^4q^2 1280p^3q^3 + 240p^2q^4 24pq^5 + q^6$
- **56.** $32s^{20} + 400s^{16} + 2000s^{12} + 5000s^8 + 6250s^4 + 3125$
- **58.** $x^{12} 4x^9y^2 + 6x^6y^4 4x^3y^6 + y^8$
- **60.** -945
- **62.** 1080
- **64.** -324
- **66.** 67.5
- **68. a.** ${}_{2}C_{2}, {}_{3}C_{2}, {}_{4}C_{2}, {}_{5}C_{2}$ **b.** $T_{n} = {}_{n+1}C_{2}$
- **70.** 840

- **71.** 30
- 72. a. $\frac{1}{2}$

b. $\frac{1}{2}$; The probabilities are the same.

73. $\frac{1061}{1250}$

74. a. 1; Each outcome has the same three marbles.

b. 6; Each outcome has a different permutation.

- **75. a.** $\frac{1}{90}$ **b.** $\frac{9}{10}$
- **76.** 376
- **77. a.** 2,598,960
 - **b.** 5148
- **78.** $\frac{1}{406}$; There are ${}_{30}C_5$ possible groups. The number of groups that will have you and your two best friends is ${}_{27}C_2$.

- p. 583 (#3-12)
- 3.

<i>x</i> (value)	1	2	3
Outcomes	5	3	2
P(x)	$\frac{1}{2}$	$\frac{3}{10}$	$\frac{1}{5}$

c (value)	1	2
Outcomes	13	39
P(c)	$\frac{1}{4}$	$\frac{3}{4}$

<i>w</i> (value)	1	2
Outcomes	5	21
P(w)	$\frac{5}{26}$	$\frac{21}{26}$

<i>n</i> (value)	1	2	3
Outcomes	10	90	900
P(n)	$\frac{1}{100}$	$\frac{9}{100}$	$\frac{9}{10}$

7. a.

b. $\frac{5}{8}$

5

8. a.

b. $\frac{1}{4}$

- **9.** about 0.00002
- **10.** about 0.0046
- **11.** about 0.00018
- **12.** about 0.000001

pp. 583-584 (#13-22)

- **b.** The most likely outcome is that 1 of the 6 students owns a ring.
- c. about 0.798

- **b.** The most likely outcome is that 4 of the 8 adults believe UFOs are watching planet Earth.
- c. about 0.407
- 15. The exponents are switched;

$$P(k=3) = {}_{5}C_{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{5-3} \approx 0.032$$

16. The combination part of the formula is missing; $P(k = 3) = {}_{5}C_{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{5-3} \approx 0.032$ **17.** a. $P(0) \approx 0.099, P(1) \approx 0.271, P(2) \approx 0.319,$ $P(3) \approx 0.208, P(4) \approx 0.081, P(5) \approx 0.019,$ $P(6) \approx 0.0025, P(7) \approx 0.00014$

b.	x	0	1	2	3	4
	P(x)	0.099	0.271	0.319	0.208	0.081
	x	5	6	7		
	P(x)	0.019	0.0025	0.000	014	

- **18.** 0.2; 0.6
- **19.** no; The data is skewed right, so the probability of failure is greater.
- 20. no; The probability of not choosing the coin 100 times

$$\sin\left(\frac{99}{100}\right)^{100} \approx 0.366.$$

- **21. a.** The statement is not valid, because having a male and having a female are independent events.
 - **b.** 0.03125

skewed right

22. p > 0.5

pp. 586-588 (#1-17)

- 1. $\frac{2}{9}; \frac{7}{9}$
- 2. 20 points
- **3. a.** 0.15625
 - **b.** about 0.1667

You are about 1.07 times more likely to pick a red then a green if you do not replace the first marble.

- **4. a.** about 0.0586
 - **b.** 0.0625

You are about 1.07 times more likely to pick a blue then a red if you do not replace the first marble.

- **5. a.** 0.25
 - **b.** about 0.2333

You are about 1.07 times more likely to pick a green and then another green if you replace the first marble.

6. about 0.529

	,	
1		
,		٠
	1	7

		Ge		
		Men	Total	
onse	Yes	200	230	430
Response	No	20	40	60
	Total	220	270	490

About 44.9% of responders were men, about 55.1% of responders were women, about 87.8% of responders thought it was impactful, about 12.2% of responders thought it was not impactful.

- **8.** 0.68
- 9. 0.02
- **10.** 5040
- 11. 1,037,836,800
- **12.** 15
- **13.** 70
- 14. $16x^4 + 32x^3y^2 + 24x^2y^4 + 8xy^6 + y^8$
- 15. $\frac{1}{84}$
- 16. about 0.12

The most likely outcome is that 4 of the 5 free throw shots will be made.