

The ______ of a sphere is the biggest circle that can be drawn on the surface of the sphere itself

In order to derive this formula we first have to see the relationship between a cylinder with similar radius and height.

What's the volume of the this cylinder in terms of the given variables?

How much of the cylinder was filled by the sphere?

From the video we saw that the sphere would fill will up 2/3 of the cylinder.

Using some algebra...

Volume Formula for a Sphere

Find the volume of the sphere. Round your answer to the nearest tenth.

Find the radius of the sphere.

Volume = 288π in.³

A **hemisphere** is one-half of a sphere. The top of the silo is a hemisphere with a radius of 12 feet. What is the volume of the silo? Round your answer to the nearest thousand.

Find the volume V or radius r of the sphere. Round your answer to the nearest tenth, if necessary.

Find the volume V or radius r of the sphere. Round your answer to the nearest tenth, if necessary.

Volume = $36\pi \text{ m}^3$

Find the volume of the composite solid. Round your answer to the nearest tenth.

Find the volume of the composite solid. Round your answer to the nearest tenth.

