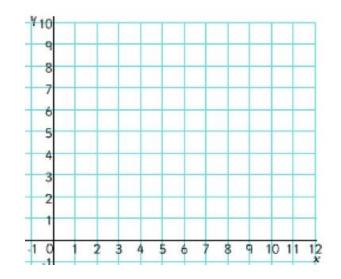
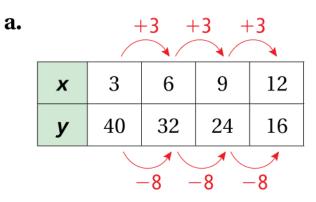


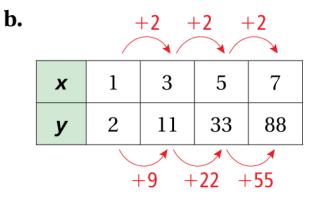
Comparing Linear & Nonlinear Functions

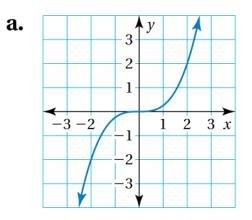
Do Now

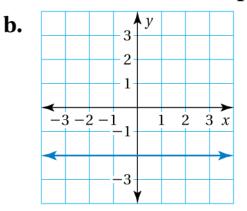

Graph the data in the table. Decide whether the graph is *linear* or *nonlinear*.

1.	x	0	1	2	3
	У	6	4	2	0


Graph the data in the table. Decide whether the graph is *linear* or *nonlinear*.


2.	x	0	1	2	3
	У	3	5	8	12


Does the table represent a *linear* or *nonlinear* function? Explain.



Does the graph represent a *linear* or *nonlinear* function? Explain.

On Your Own

Does the table or graph represent a *linear* or *nonlinear* function? Explain.

2.

1.	x	У
	0	25
	7	20
	14	15
	21	10

x	У
2	8
4	4
6	0
8	-4

3.

Which equation represents a *nonlinear* function?

(A)
$$y = 4.7$$

(B) $y = \pi x$
(C) $y = \frac{4}{x}$
(D) $y = 4(x - 1)$

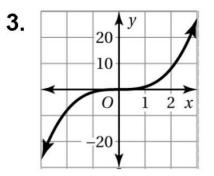
Account A earns simple interest. Account B earns compound interest. The table shows the balances for 5 years. Graph the data and compare the graphs.

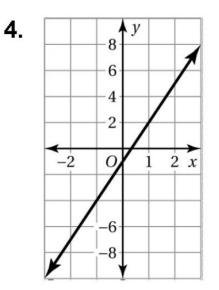
Year, t	Account A Balance	Account B Balance
0	\$100	\$100
1	\$110	\$110
2	\$120	\$121
3	\$130	\$133.10
4	\$140	\$146.41
5	\$150	\$161.05

<u>On Your Own</u>

Does the equation represent a *linear* or *nonlinear* function? Explain.

4.
$$y = x + 5$$
 5. $y = \frac{4x}{3}$ **6.** $y = 1 - x^2$


Graph the data in the table. Decide whether the graph is *linear* or *nonlinear*.


1.	x	0	1	2	3
	У	5	10	15	20

2.	x	1	2	3	4
	У	4	6	9	13

Does the table or graph represent a *linear* or *nonlinear* function? Explain.

5.	x	3	5	7	9
	У	5	3	0	3

6. **x** 4 7 10 13 **y** -2 0 2 4

7. The table shows the area *A* (in square centimeters) of a circle with radius *r* centimeters. Does the table represent a *linear* or *nonlinear* function? Explain.

Radius, <i>r</i>	1	2	3	4	5	6	7	8
Area, A	π	4π	9π	16π	25π	36π	49 <i>π</i>	64π

Practice

Interpret the slope.

- 8. The table shows the cost y (in dollars) of x ounces of cereal.
 - **a.** What is a missing *y*-value that makes the table represent a nonlinear function?
 - **b.** What is the missing *y*-value that makes the table represent a linear function?
 - c. Write a linear function that represents the cost *y* of *x* ounces of cereal.

Ounces, <i>x</i>	8	12	16
Cost, y	?	2.5	3.5