pg 7-9 #7-15, 21-27, 34, 38

7.
$$x = -5$$

8.
$$g = 24$$

9.
$$p = 21$$

10.
$$y = -2.04$$

11.
$$x = 9\pi$$

12.
$$w = 10\pi$$

13.
$$d = \frac{1}{2}$$

14.
$$r = -\frac{7}{24}$$

15.
$$n = -4.9$$

21.
$$m = 7.3\pi$$

22.
$$g = -6$$

23.
$$k = 1\frac{2}{3}$$

24.
$$x = 0.2$$

25.
$$p = -2\frac{1}{3}$$

26.
$$d = 4$$

$$-1.5 + k = 8.2$$

 $k = 8.2 + 1.5$
 $k = 9.7$

34.
$$w = 19$$

38.
$$p = -\frac{1}{12}$$

pg 14-15 #6-12, 19-22

- **6.** x = 3
- 7. c = 0.5
- 8. x = -2
- **9.** h = -9
- **10.** v = 2
- **11.** $x = -\frac{2}{9}$
- **12.** They did not distribute the -2 properly.

$$-2(7 - y) + 4 = -4$$

$$-14 + 2y + 4 = -4$$

$$2y - 10 = -4$$

$$2y = 6$$

$$y = 3$$

- 19. <
- **20.** =
- 21. >
- **22.** D

pg 23-25 #8-12, 15, 21-26, 30

8.
$$x = 8.2$$

9.
$$p = -48$$

10.
$$w = 2$$

11.
$$n = -3.5$$

12.
$$z = 1.6$$

15. The 4 should have been added to the right side.

$$3x - 4 = 2x + 1$$

$$3x - 2x - 4 = 2x + 1 - 2x$$

$$x - 4 = 1$$

$$x - 4 + 4 = 1 + 4$$

$$x = 5$$

- 21. no solution
- 22. infinitely many solutions
- 23. infinitely many solutions

24.
$$x = 6$$

25.
$$x = 2$$

- **26.** no solution
- **30.** When the equation is 0 = 0, it means it is true for all values of n, not just 0; The equation has infinitely many solutions.

pg 30-31 #5-12, 20, 21

5.
$$y = 4 - \frac{1}{3}x$$

6.
$$y = 35 - 15x$$

7.
$$y = \frac{2}{3} - \frac{4}{9}x$$

8.
$$y = \frac{7}{2}x - \frac{\pi}{2}$$

9.
$$y = 3x - 1.5$$

10.
$$y = \frac{4}{3} + \frac{1}{4}x$$

11. The *y* should have a negative sign in front of it.

$$2x - y = 5$$
$$-y = -2x + 5$$
$$y = 2x - 5$$

12. a.
$$C = K - 273.15$$

The rewritten formula is a general solution that can be reused.

21. a.
$$F = 32 + \frac{9}{5}(K - 273.15)$$

pg 33-35 #1-3, 7-16

1.
$$y = -19$$

2.
$$n = -8$$

3.
$$t = 12\pi$$

7.
$$m = 6$$

8.
$$p = 0.4$$

9.
$$n = -19$$

13.
$$y = -\frac{1}{6}x + \frac{4}{3}$$

14.
$$y = 2x - 3$$

15.
$$y = -\frac{1}{2}x + 2$$

16. a.
$$K = \frac{5}{9}(F - 32) + 273.15$$

pg 287 #1-9

- **1.** =
- 2. <
- 3. <
- **4.** *Sample answer:* -0.009, -0.001, 0.01
- **5.** *Sample answer:* −1.75, −1.74, 1.74
- **6.** *Sample answer:* −0.75, 0.74, 0.75
- **7.** −3
- **8.** 181
- **9.** 99

pg 292-293 #5, 6, 9-11, 14, 15, 18, 19, 21, 22, 25, 26, 31, 34

5.
$$s = 1.3 \text{ km}$$

6.
$$r = 8 \text{ in.}$$

9.
$$2$$
 and -2

14.
$$-\frac{3}{10}$$

19. The positive and negative square roots should have been given.

$$\pm\sqrt{\frac{1}{4}} = \frac{1}{2} \text{ and } -\frac{1}{2}$$

34. yes; *Sample answer:* Consider the perfect squares, a^2 and b^2 . Their product can be written

as
$$a^2b^2 = a \cdot a \cdot b \cdot b =$$

 $(a \cdot b) \cdot (a \cdot b) = (a \cdot b)^2$.

pg 298-299 #4, 5, 7, 10, 11, 13, 15, 17, 18, 20, 24, 27, 28

4.
$$\frac{1}{3}$$
 ft

10.
$$-\frac{1}{8}$$

11.
$$\frac{7}{4}$$

13.
$$3\frac{5}{8}$$

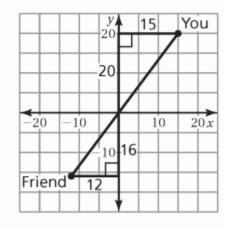
15.
$$\frac{7}{12}$$

28. a. not true; *Sample answer:*
$$\sqrt[3]{-8} = -2$$

pg 304-305 #3, 5, 7, 8, 9, 11, 16 (draw diagram), 17

- **3.** 29 km
- **5.** 9 in.
- **7.** 24 cm
- **8.** $11\frac{2}{3}$ yd
- **9.** The length of the hypotenuse was substituted for the wrong variable.

$$a^2 + b^2 = c^2$$


$$7^2 + b^2 = 25^2$$

$$49 + b^2 = 625$$

$$b^2 = 576$$

$$b = 24$$

- **11.** 16 cm
- **16.** 7
- **17.** a. Sample answer:

b. 45 ft

pg 313-315 #5, 8-11, 15, 19, 20, 23-25, 27, 28, 39, 50

- **5.** yes
- **8.** yes
- 9. whole, integer, rational
- 10. natural, whole, integer, rational
- **11.** irrational
- 15. irrational
- **19. a.** If the last digit is 0, it is a whole number. Otherwise, it is a natural number.
 - b. irrational number
 - c. irrational number
- **20**. a. 7
 - **b.** 6.8
- **23.** a. −10
 - **b.** -10.2
- **24.** a. 3
 - **b.** 2.6
- **25.** a. −13
 - **b.** -12.9
- 27. $\sqrt{15}$; $\sqrt{15}$ is positive and -3.5 is negative.

28.
$$\sqrt{133}$$
; $\sqrt{133}$ is to the right of $10\frac{3}{4}$.

- **39.** 20.6 in.
- 50. Sample answers are given.
 - **a.** always; The product of two fractions is a fraction.

$$\frac{2}{3} \cdot \frac{3}{4} = \frac{1}{2}$$

- **b.** sometimes; $\pi \cdot 0 = 0$ is rational, but $2 \cdot \sqrt{3}$ is irrational.
- **c.** sometimes; $\sqrt{2} \cdot \pi$ is irrational, but $\pi \cdot \frac{1}{\pi}$ is rational.

pg 325-327 #3, 5, 6, 7, 9, 11, 13-16, 19, 20, 22, 23

- 3. 1.3 and -1.3
- **5.** $3\frac{2}{3}$
- **6.** −30
- **7.** 9
- **9.** $-\frac{2}{3}$
- **11.** 17
- **13.** 37 in.
- **14.** 0.4 cm
- 15. rational
- **16.** irrational
- **19**. **a**. 9
 - **b.** 9.5
- **20.** a. 13
 - **b.** 13.2
- **22.** $\frac{4}{11}$
- **23.** $-1\frac{2}{3}$

pg 414-415 #3-9 odd, 12-14, 16-18, 22-24, 26

- **3.** 3⁴
- **5.** $\left(-\frac{1}{2}\right)^3$
- 7. $\pi^3 x^4$
- **9.** $(6.4)^4b^3$
- **12.** -1331
- **13.** 1
- **14.** $\frac{1}{64}$
- **16.** $-\frac{1}{729}$
- **17.** The negative sign is not part of the base;

$$-6^2 = -(6 \cdot 6) = -36.$$

- **18.** $3^3 \cdot 5^2$
- **22.** 65
- **23.** 5
- **24.** 5
- **26.** 2

pg 420-421 #3, 5, 8, 10-12, 14-16, 18, 19, 21, 23, 26

5.
$$(-4)^{12}$$

8.
$$\left(\frac{2}{3}\right)^8$$

10.
$$(-2.9)^8$$

12.
$$b^{36}$$

14.
$$\left(-\frac{3}{4}\right)^{10}$$

15. The bases should not be multiplied.

$$5^2 \cdot 5^9 = 5^{2+9} = 5^{11}$$

16. The exponents should not be added. Write the expression as repeated multiplication.

$$(r^6)^4 = r^6 \cdot r^6 \cdot r^6 \cdot r^6$$

= $r^{6+6+6+6}$
= r^{24}

18.
$$-243v^5$$

19.
$$\frac{1}{25}k^2$$

21.
$$r^{12} t^{12}$$

23. no;
$$3^2 + 3^3 = 9 + 27 = 36$$
 and $3^5 = 243$

pg 426-427 #3, 5, 8, 10, 12, 13, 15, 17, 18, 20, 21, 24, 25, 28, 32

- **3.** 6⁶
- **5.** $(-3)^3$
- **8.** 64
- **10.** $(-7.9)^6$
- **12.** π^4
- **13.** b^{13}
- **15.** You should subtract the exponents instead of dividing them.

$$\frac{6^{15}}{6^5} = 6^{15-5}$$
$$= 6^{10}$$

- **17.** 2⁹
- **18.** $(-8.3)^2$
- **20.** c^5
- **21.** k^{14}
- **24.** 6w
- **25.** $125a^3b^2$
- **28.** m^9n
- **32.** 10; The difference in the exponents needs to be 9. To find *x*, solve the equation

$$3x - (2x + 1) = 9.$$

p. 442-443 #c, d, 3

No answers for this section

pg 432-433 #6, 8, 9, 12, 15, 17, 19, 21-27 odd, 29-32

- **6.** 125
- **8.** 1
- **9.** $\frac{1}{36}$
- **12.** $-\frac{1}{3}$
- **15.** $\frac{1}{125}$
- **17.** The negative sign goes with the exponent, not the base.

$$(4)^{-3} = \frac{1}{4^3} = \frac{1}{64}$$

- **19.** 2°; 10°
- **21.** $\frac{a^7}{64}$
- **23.** 5*b*
- **25.** 12
- **27.** $\frac{w^6}{9}$
- **29.** 100 mm
- **30.** 10,000 micrometers
- **31.** 1,000,000 nanometers
- **32.** 1,000,000 micrometers

pg 435 #1, 2, 4-10, 12-17

- **1.** (−5)⁴
- 2. 7^2m^3
- **4.** 64
- **5.** 1
- **6.** $\frac{1}{125}$
- **7.** 3⁹
- **8.** a^{15}
- **9.** 81*c*⁴
- **10.** $\frac{4}{49}p^2$
- **12.** 6⁸
- 13. π^3
- **14.** t^{10}
- **15.** $\frac{8}{d^6}$
- **16.** $\frac{3}{x^2}$
- **17.** a 10^{-3} m
 - **b.** 1 millimeter; The length is less than 1 meter and a millimeter is smaller than a meter.

pg 440 #1-5, Practice 3-5
No answers for this section

pg 440-441 #3-5, 6, 8, 9, 16, 23, 24, 28, 32

- **3.** 5,600,000,000,000
- **4.** 0.00000000021
- **5.** 87,300,000,000,000,000
- **6.** yes; The factor is greater than or equal to 1 and less than 10. The power of 10 has an integer exponent.
- 8. no; The factor is less than 1.
- **9.** no; The factor is greater than 10.
- **16.** 0.008
- **23.** 9,725,000
- **24.** The negative exponent means the decimal point will move left, not right, when the number is written in standard form. $4.1 \times 10^{-6} = 0.0000041$
- **28.** The value of the number is 10 times greater.
- 32. See Taking Math Deeper.

pg 446-447 #6, 11-13, 16, 19, 24, 25

- 6. 6.25×10^{-6}
- **11.** 8.4×10^5
- 12. The decimal point moved 5 places to the right, so the exponent should be negative. 3.6×10^{-5}
- 13. 72.5 is not less than 10. The decimal point needs to move one more place to the left. 7.25×10^7
- **16.** 5.7×10^{10} , 9.66×10^{11} , 5.76×10^{12}
- **19.** 6.88×10^{-23} , 5.78×10^{23} , 5.82×10^{23}
- **24.** 0.02, $\frac{5}{241}$, 2.1×10^{-2}
- **25.** 6.25×10^{-3} , 6.3%, 0.625, $6\frac{1}{4}$

pg 452-453 #5-8, 15, 17-23 odd, 25, 26

- 5. 4.947×10^{11}
- **6.** 2.79×10^8
- 7. 5.8×10^5
- 8. 1.83×10^{-9}
- **15.** You have to rewrite the numbers so they have the same power of 10 before adding; 3.03×10^9
- 17. 2.9×10^{-3}
- **19.** $1.5 \times 10^{\circ}$
- **21.** 2.88×10^{-7}
- **23.** 1.12×10^{-2}
- **25.** 4.006×10^9
- **26.** 2.9×10^{-2}

pg 455-457 #1, 2, 4-7, 9, 11, 12, 14, 17, 19-21, 23, 27, 28, 30-34

- **1.** $(-9)^5$
- 2. 2^3n^2
- **4.** $-\frac{1}{16}$
- **5.** 100
- **6.** p^7
- 7. n^{22}
- 9. $16k^4$
- **11.** 5¹⁰
- **12.** w^4
- **14.** 216*c*²
- **17.** 1
- **19.** 1
- **20.** $\frac{1}{343}$
- **21.** 1
- **23.** 0.034
- **27.** 625,000
- **28.** 3.6×10^{-4}
- **30.** 7.92×10^7
- **31.** 6.32×10^9
- **32.** 4.1×10^{-4}
- **33.** 3.773×10^4